首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
K.B. Joshi 《Tetrahedron》2007,63(25):5602-5607
This report describes an accelerated self-assembly of a synthetic cyclic hexapeptide in the presence of alkali metal ions. Time-dependent aggregation of hexapeptide was considerably influenced upon co-incubation with monovalent metal ions, of which K+ afforded the most significant effect both on the time-scale required for self-assembly and on the morphology of aged structures. Metal ion adducts formation ability of the hexapeptide was confirmed by electrospray ionization mass spectrometry measurements and 13C NMR spectrometry. The effect of metal ion binding on peptide structure was also probed by circular dichroism, optical microscopy, and scanning electron microscopy. K+ ions not only interacted more efficiently with the hexapeptide enabling it to reach conformational state(s) conducive for self-assembly, but also altered the morphologies of the aged peptide fibers, when compared to the unmetalated peptide.  相似文献   

2.
An amphiphilic hexapeptide has been used as a model to quantify how specific ion effects induced by addition of four salts tune the hydrophilic/hydrophobic balance and induce temperature-dependant coacervate formation from aqueous solution. The hexapeptide chosen is present as a dimer with low transfer energy from water to octanol. Taking sodium chloride as the reference state in the Hofmeister scale, we identify water activity effects and therefore measure the free energy of transfer from water to octanol and separately the free energy associated to the adsorption of chaotropic ions or the desorption of kosmotropic ions for the same amphiphilic peptide. These effects have the same order of magnitude: therefore, both energies of solvation as well as transfer into octanol strongly depend on the nature of the electrolytes used to formulate any buffer. Model peptides could be used on separation processes based on criteria linked to "Hofmeister" but different from volume and valency.  相似文献   

3.
F Lestremau  V Desauziers  J L Fanlo 《The Analyst》2001,126(11):1969-1973
Solid-phase micro extraction (SPME) is a promising technique for fast and low cost trace analysis. However, some limitations of the technique were encountered when using a PDMS (polydimethylsiloxane)/Carboxen fibre for sampling a mixture of volatile aliphatic amines in air. On the GC chromatogram, two supplementary peaks were noticed in addition to the analyte peaks, thus limiting qualitative and quantitative analysis in this particular case. This paper presents the investigations to identify the artefacts and determine the origin of their formation. First, GC-MS identification, by both electron impact and chemical ionisation modes, demonstrated that the two artefacts were unsaturated amines assumed to be formed by a dehydrogenation reaction of the target amines. This reaction was found to occur during thermal desorption of analytes in the GC injection port and to be catalysed by temperature and by metals consisting of the inox (stainless-steel) needle of the SPME device. It was also demonstrated that artefact formation was not significant when using PDMS or PDMS/divinylbenzene fibres. This difference with PDMS/Carboxen fibre can be explained by the high desorption temperature required for this fibre. Moreover, the microporosity of Carboxen induces a longer desorption time which increases the contact between analytes and inox and thereby enhances artefact formation.  相似文献   

4.
Redox properties of Cu(II) complexes of the terminally blocked hexapeptide -TESHHK- and a series of its alanine substituted analogs: -TASHHK-, -TEAHHK-, -TESAHK-, -TESHAK-, were investigated in their reactions with hydrogen peroxide in solution and by cyclic voltammetry in a broad range of pH. The formation of reactive oxygen species was followed with the use of spectrophotometric indicators, NDMA and NBT. The results indicate that the ability of these complexes to generate hydroxyl-like radicals correlates with the formation of active Cu(III) complexes resulting from the oxidation of Cu(II) by H2O2, which interact with further H2O2 molecules specifically.  相似文献   

5.
[M + Cu]+ peptide ions formed by matrix-assisted laser desorption/ionization from direct desorption off a copper sample stage have sufficient internal energy to undergo metastable ion dissociation in a time-of-flight mass spectrometer. On the basis of fragmentation chemistry of peptides containing an N-terminal arginine, we propose the primary Cu+ ion binding site is the N-terminal arginine with Cu+ binding to the guanidine group of arginine and the N-terminal amine. The principal decay products of [M + Cu]+ peptide ions containing an N-terminal arginine are [a(n) + Cu - H]+ and [b(n) + Cu - H]+ fragments. We show evidence to suggest that [a(n) + Cu - H]+ fragment ions are formed by elimination of CO from [b(n) + Cu - H]+ ions and by direct backbone cleavage. We conclude that Cu+ ionizes the peptide by attaching to the N-terminal arginine residue; however, fragmentation occurs remote from the Cu+ ion attachment site involving metal ion promoted deprotonation to generate a new site of protonation. That is, the fragmentation reactions of [M + Cu]+ ions can be described in terms of a "mobile proton" model. Furthermore, proline residues that are adjacent to the N-terminal arginine do not inhibit formation of [b(n) + Cu - H]+ ion, whereas proline residues that are distant to the charge carrying arginine inhibit formation of [b(n) + Cu - H]+ ions. An unusual fragment ion, [c(n) + Cu + H]+, is also observed for peptides containing lysine, glutamine, or asparagine in close proximity to the Cu+ carrying N-terminal arginine. Mechanisms for formation of this fragment ion are also proposed.  相似文献   

6.
A one-handed 310-helical hexapeptide is efficiently encapsulated within the helical cavity of st-PMMA when a fullerene (C60) derivative is introduced at the C-terminal end of the peptide. The encapsulation is accompanied by induction of a preferred-handed helical conformation in the st-PMMA backbone with the same-handedness as that of the hexapeptide to form a crystalline st-PMMA/peptide-C60 inclusion complex with a unique optically active helix-in-helix structure. Although the st-PMMA is unable to encapsulate the 310-helical peptide without the terminal C60 unit, the helical hollow space of the st-PMMA is almost filled by the C60-bound peptides. This result suggests that the C60 moiety can serve as a versatile molecular carrier of specific molecules and polymers in the helical cavity of the st-PMMA for the formation of an inclusion complex, thus producing unique supramolecular soft materials that cannot be prepared by other methods.  相似文献   

7.
We have determined the effects of dope extrusion speed (or shear rate within a spinneret) during hollow fibre spinning on ultrafiltration membrane's morphology, permeability and separation performance, and thermal and mechanical properties. We purposely chose wet-spinning process to fabricate the hollow fibres without drawing and used water as the external coagulant in the belief that the effects of gravity and elongation stress on fibre formation could be significantly reduced and the orientation induced by shear stress within the spinneret could be frozen into the wet-spun fibres. An 86/14 (weight ratio) NMP/H2O mixture was employed as the bore fluid with a constant ratio of dope fluid to bore fluid flow rate while increasing the spinning speed from 2.0 to 17.2 m/min in order to minimise the complicated coupling effects of elongation stress, uneven external solvent exchange rates, and inner skin resistance on fibre formation and separation performance. Hollow fibre UF membranes were made from a dope solution containing polyethersulphone (PES)/N-methyl-2-pyrrolidone (NMP)/diethylene glycol (DG) with a weight ratio of 18/42/40. This dope formulation was very close to its cloud point (binodal line) in order to speed up the coagulation of nascent fibres as much as possible so that the relaxation effect on molecular orientation was reduced. Experimental results suggested that a higher dope flow rate (shear rate) in the spinneret resulted in a hollow fibre UF membrane with a smaller pore size and a denser skin due to a greater molecular orientation. As a result, when the dope extrusion speed increased, pore size, water permeability, CTE and elongation of the final membranes decreased, but the separation performance, storage modulus, tensile strength and Young's modulus increased. Most surprisingly, for the first time, we found that there was a certain critical value, when the dope extrusion rate was over this value, the final fibre performance could not be influenced significantly. The results suggested that it was possible to dramatically enhance the production efficiency of hollow fibre UF membranes with the same fibre dimension and similar separation performance by the method proposed in this paper.  相似文献   

8.
We report a comprehensive density functional theory (DFT) study of the mechanism of pentosidine formation. This work is a continuation of our earlier studies in which we proposed pathways for formation of glucosepane (J. Mol. Model. 2011, pp 1-15, DOI 10.1007/s00894-011-1161-x), GODIC (glyoxal-derived imidazolium cross-link), and MODIC (methyl glyoxal-derived imidazolium cross-link; J. Phys. Chem. 2011, 115, pp 13542-13555). Here we show that formation of pentosidine via reaction of α-oxoaldehydes with lysine and arginine in aqueous solution is possible thermodynamically and kinetically, in good agreement with the available experimental evidence. Five pathways, A-E, were characterized, as in our previous GODIC and MODIC work. In pathways A and B, a Schiff base is first formed from lysine and methyl glyoxal (MGO), and this is followed by addition of arginine and glyoxal (GO). By contrast, in pathways C, D, and E, addition of arginine to MGO occurs first, resulting in the formation of imidazolone, which then reacts with lysine and GO to give pentosidine. Our calculations show that the reaction process is highly exergonic and that the three pathways A, C, and E are competitive. These results serve to underline the potentially important role that α-oxoaldehydes play as precursors in pentosidine formation in the complex field of glycation.  相似文献   

9.
Rational design of affinity peptide ligands of proteins by flexible docking simulation is performed using the SYBYL program package. This approach involves the use of experimental data to verify a scoring function that can be used to assess the affinity of a peptide for its target protein. The enzyme-linked immunosorbent assay (ELISA) data of several peptides displayed on phage surfaces for insulin and lysozyme, respectively, reported in literature are used for the purpose. It is found that the absolute values of the Dscore calculated from the docking correspond well to the ELISA data that relate to the affinity between the peptides and the target molecule. So, the Dscore function is used to assess the affinity of docked peptides in a pentapeptide library designed on the basis of protein (alpha-amylase) structure. As a result, a pentapeptide with a high Dscore value is selected and a hexapeptide (FHENWS) is built by linking serine to its C-terminal to lengthen the peptide. Molecular surface analysis with the MOLCAD program reveals that electrostatic interactions (including hydrogen bonds) and Van der Waals forces contribute to the affinity of the hexapeptide for alpha-amylase. Chromatographic experiments with the immobilized peptide have given further evidence for this observation. Adsorption isotherm described by the Langmuir equation indicates that the apparent binding constant of alpha-amylase to the immobilized hexapeptide was 2.5x10(5)L/mol. Finally, high affinity and specificity of the affinity adsorbent is exemplified by the purification of alpha-amylase from crude fermentation broth of Bacillus subtilis.  相似文献   

10.
A one‐handed 310‐helical hexapeptide is efficiently encapsulated within the helical cavity of st‐PMMA when a fullerene (C60) derivative is introduced at the C‐terminal end of the peptide. The encapsulation is accompanied by induction of a preferred‐handed helical conformation in the st‐PMMA backbone with the same‐handedness as that of the hexapeptide to form a crystalline st‐PMMA/peptide‐C60 inclusion complex with a unique optically active helix‐in‐helix structure. Although the st‐PMMA is unable to encapsulate the 310‐helical peptide without the terminal C60 unit, the helical hollow space of the st‐PMMA is almost filled by the C60‐bound peptides. This result suggests that the C60 moiety can serve as a versatile molecular carrier of specific molecules and polymers in the helical cavity of the st‐PMMA for the formation of an inclusion complex, thus producing unique supramolecular soft materials that cannot be prepared by other methods.  相似文献   

11.
In order to reveal more information about the toxicity caused by metals and furthermore their influence to the physiological metabolism of the cell, the hexapeptide model Ac-ThrTyrThrGluHisAla-am representing the C-terminal 71-76 fragment of histone H4 which lies into the nucleosome core, was synthesized. A combined pH-metric and spectroscopic UV-VIS, EPR, CD and NMR study of Ni(II) and Cu(II) binding to the blocked hexapeptide, revealed the formation of octahedral complexes involving imidazole nitrogen of histidine, at pH 5 and pH 7 for Cu(II) and Ni(II) ions respectively. In basic solutions a major square-planar 4 N Ni(II)-complex, adopting a {N(Im), 3N(-)} coordination mode, was formed. In the case of Cu(II) ions, a 3 N complex, involving the imidazole nitrogen of histidine and two deprotonated amide nitrogens of the backbone of the peptide, at pH 7 and a series of 4 N complexes starting at pH 6.5, were suggested. In addition Ni(II)-mediated hydrolysis of the peptide bond-Tyr-Thr was evident following our experimental data.  相似文献   

12.
Arginine is often involved at the C-terminus of peptides obtained from tryptic digests of proteins. The very basic guanidine group of the side-chain of arginine has a large effect on the backbone fragmentation of protonated peptides. Furthermore, arginine exhibits specific fragmentation reactions involving its side-chain. Various tautomerization states, conformers and side-chain dissociation channels of protonated arginine were studied using theoretical methods. The guanidine loss of protonated arginine is proved to be an S(N)2 substitution on the delta-carbon of the side-chain, starting from species containing the N(epsilon)H-C(+)(N(eta)H(2))(N(eta')H(2)) or -N(epsilon) (+)H(2)-C(N(eta)H)(N(eta')H(2)) moieties and leads to formation to either protonated guanidine or protonated proline. In the corresponding transition structures the proline moiety is protonated. Under low-energy collision conditions the extra proton transfers to the guanidine moiety, leading to the formation of C(+)(NH(2))(3). On the other hand, the lifetime of the fragmenting species under high-energy collision conditions is shorter, resulting in enhanced formation of protonated proline and its dissociation products. The first step of ammonia loss is the leaving of a preformed NH(3) from tautomers containing the -N(epsilon)H-C(N(eta)H(3) (+))(N(eta')H) or -N(epsilon)-C(N(eta)H(3) (+))(N(eta')H(2)) moieties. The resulting protonated carbodiimide group can be stabilized by intramolecular nucleophilic attack, leading to ring formation. Overall, reactions involved in the ammonia loss from protonated arginine can be considered as an S(N)1 substitution on the central zeta-carbon of the guanidine group.  相似文献   

13.
The mechanism for inhibition of the Pseudomonas aeruginosa arginine deiminase (PaADI) by the arginine analogue l-canavanine was investigated. Inhibition by this substance (kinact = 0.31 +/- 0.03 min-1 and Ki = 1.7 +/- 0.5 mM) is associated with the formation of a modestly stable S-alkylthiouronium intermediate, detected by using kinetic techniques and identified by using electrospray ionization mass spectrometry. The electronic and/or orientation effects, caused by oxygen-for-methylene substitution in l-canavanine, on the rate of enzyme regeneration from the S-alkylthiouronium intermediate could serve as the basis for a strategy for the rational design of new slow substrate inhibitors of ADI.  相似文献   

14.
Ferrichrome, a biologically active sideramine isolated from cultures of several strains of fungi, was synthesized starting from δ-nitro-L -norvaline and glycine. The intermediate trinitro-cyclohexapeptide 17 could be obtained in high yield by SCHWYZER 's method from the corresponding open-chain hexapeptide 16 .  相似文献   

15.
《化学:亚洲杂志》2017,12(10):1087-1094
Aiming at precisely arranging several proteinogenic α‐amino acids on a folded scaffold, we have developed a cyclic hexapeptide comprising an alternate sequence of biphenyl‐cored ζ‐amino acids and proteinogenic α‐amino acids such as l ‐leucine. The amino acids were connected by typical peptide synthesis, and the resultant linear hexapeptide was intramolecularly cyclized to form a target cyclic peptide. Theoretical analyses and NMR spectroscopy suggested that the cyclic peptide was folded into an unsymmetrical conformation, and the structure was likely to be flexible in CHCl3. The optical properties including UV/Vis absorption, fluorescence, and circular dichroism (CD) were also evaluated. Furthermore, the cyclic peptide became soluble in water by introducing three carboxylate groups at the periphery of the cyclic skeleton. This α/ζ‐alternating cyclic peptide is therefore expected to serve as a unique scaffold for arranging several functionalities.  相似文献   

16.
静电纺丝法制备PVP螺旋纤维及其机理研究   总被引:3,自引:1,他引:2  
研究了电纺丝聚乙烯吡咯烷酮螺旋纤维的形成条件, 在9kV的电压下, 由于溶液质量分数的增加(12%-24%), 纤维形态呈现出直线→螺旋→折叠→无序的变化趋势; 在质量分数为20%时, 随着纺丝电压的增加, 纤维形态呈现出折叠→螺旋→无序的变化趋势, 同时对螺旋纤维的形成机理进行了讨论, 在纺丝过程中纤维束所带静电荷之间的库仑斥力是形成螺旋纤维的直接动力.  相似文献   

17.
Amyloid fibril formation, as observed in Alzheimer's disease and type II diabetes, is currently described by a nucleation-condensation mechanism, but the details of the process preceding the formation of the nucleus are still lacking. In this study, using an activation-relaxation technique coupled to a generic energy model, we explore the aggregation pathways of 12 chains of the hexapeptide NFGAIL. The simulations show, starting from a preformed parallel dimer and ten disordered chains, that the peptides form essentially amorphous oligomers or more rarely ordered beta-sheet structures where the peptides adopt a parallel orientation within the sheets. Comparison between the simulations indicates that a dimer is not a sufficient seed for avoiding amorphous aggregates and that there is a critical threshold in the number of connections between the chains above which exploration of amorphous aggregates is preferred.  相似文献   

18.
We prepared an analogue of an antitumor bicyclic hexapeptide RA-VII whose amide configuration between residues 2 and 3 was fixed to cis by incorporating a triazole cis-amide bond surrogate. This analogue was shown, by NMR studies, to take almost the same conformation as that of the minor conformer of RA-VII. It showed no cytotoxic activity.  相似文献   

19.
Pashinintide A (1), a new cyclic hexapeptide, included a saccharose, and a new cyclic heptapeptide named pashinintide B (2) were isolated from the branches and leaves of Pyrus pashia Buch.-Ham. ex D. Don. 1 and 2 present the first two plant cyclopeptides from Rosaceae. And the stable complex of cyclic hexapeptide and sucrose in 1 suggests that cyclic hexapeptide might be a new natural receptor for saccharide.  相似文献   

20.
Unidirectionally reinforced metal-matrix composites with a fibre volume content between 63 and 68% were processed by squeeze casting using T800 H carbon fibres and the magnesium alloy AZ91. The surface of the fibres was prepared by thermal desizing of the fibres or by deposition of a pyrolytic carbon (pyC) coating. Different interfacial conditions could be identified by transmission electron microscopy (TEM) and the single-fibre push-in test. TEM confirmed the formation of needle-like phases at the fibre surface or, for coated fibres, within the pyrolytic carbon coating. During loading by the Vickers type indenter an intense response was observed for composites of coated fibres and the magnesium alloy. This could by caused by stick-slip effects within the pyrolytic carbon coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号