首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A polymer film of tetra(p-aminophenyl) porphyrin nickel was obtained at a glassy carbon electrode by a cyclic voltammetric method. Cyclic voltammograms of the film electrode exhibited two stable redox waves with anodic peak potential at 0.43V and cathodic peak potential at 0.30 V in 0.5M NaOH aqueous solution. The electrocatalytic characteristics of the film electrode were studied by cyclic voltammetry, a. c. impedance analysis and other methods. The oxidation peak current increased linearly with the addition of acetaminophen to the aqueous NaOH medium in the range 1 × 10–6–2 × 10–4 M acetaminophen. The performance of the electrode was verified by the determination of acetaminophen in a paracetamol preparation.  相似文献   

2.
An extract of crystal violet-tetrachloroferrate(III) in nitrobenzene was used to prepare a tetrachloroferrate(III)-selective liquid membrane electrode with a poly(vinyl chloride) support. The optimal conditions to determine 2.5 × 10–5 – 5.0 × 10–2 M iron(III) as tetrachloroferrate(III) (anionic slope 56 mV/decade, detection limit 7.9 × 10–6 M) were found to be 4.0–5.5.M total chloride in 0.75–1.5M hydrochloric acid. The electrode was reliably applied to determine iron in human blood, haematite and mineralized vitamin syrup by direct potentiometry, standard and sample additions as well as standard subtraction techniques.  相似文献   

3.
A new chemically modified electrode (CME), -benzoinoxime (CUPRON) modified carbon paste electrode, for determining copper(II) is reported because of its excellent selectivity and sensitivity. The electrode is made by mixing a quantity of CUPRON (25%, w/w) with graphite powder (50%, w/w) and paraffin oil (25%, w/w). The CME preferentially deposits copper from the pH 8.5 NH3-NH4Cl buffer solution containing copper(II) under an open circuit and most of metal ions do not interfere with the measurements. The detection limit (S/N of three) for determining Cu(II) is 3 × 10–10 g/ml after 10 min accumulation in fast linear scan stripping voltammetric measurement. Linear calibration curves are obtained for Cu(II) concentration ranged from 1 × 10–8 M to 1 × 10–6 M. The response can be maintained with relative standard deviation of 6.0% in a 5 × 10–6 M Cu(II) solution after eight accumulation/measurement/ regeneration cycles at the same electrode surface. The effect resulted from carbon paste preparation, reduction potential, electrode renewal, electrolyte and solution pH, preconcentration time, concentration dependence, possible interference and other variables has been evaluated. As for application, the CME demonstrates its high sensitivity and copper-selectivity in complex composition samples, such as anodic mud and polluted water.  相似文献   

4.
A novel organic gel film modified electrode was simply and conveniently fabricated by casting LixMoOy and polypropylene carbonate (PPC) onto the surface of a gold electrode. The cyclic voltammetry and amperometry studies demonstrated that the LixMoOy film modified electrode has a high stability and a good electrocatalytic activity for the reduction of iodate. In amperometry, a good linear relationship between the steady current and the concentration of iodate was obtained in the range from 3×10–7 to 1×10–4 mol L–1 with a correlation coefficient of 0.9997 and a detection limit of 1×10–7 mol L–1.  相似文献   

5.
A polyaniline (PANI)/carbon nanotubes (CNTs) composite modified electrode was fabricated by galvanostatic electropolymerization of aniline on multi-walled carbon nanotubes (MWNTs)-modified gold electrode. The electrode thus prepared exhibits enhanced electrocatalytic behavior to the reduction of nitrite and facilitates the detection of nitrite at an applied potential of 0.0 V. Although the amperometric responses toward nitrite at MWNTs/gold and PANI/gold electrodes have also been observed in the experiments, these responses are far less than that obtained at PANI/MWNTs/gold electrode. The effects of electropolymerization time, MWNTs concentration and pH value of the detection solution on the current response of the composite modified electrode toward sodium nitrite, were investigated and discussed. A linear range from 5.0 × 10−6 to 1.5 × 10−2 M for the detection of sodium nitrite has been observed at the PANI/MWNTs modified electrode with a sensitivity of 719.2 mA M−1 cm−2 and a detection limit of 1.0 μM based on a signal-to-noise ratio of 3.  相似文献   

6.
Fullerene was immobilized on the surface of a glassy carbon electrode and reduced by an electrochemical method to form a partially reduced fullerene film. The films on the electrode showed stable electrocatalytic activity towards the oxidation of nitric oxide (NO). The catalytic current was proportional to the concentration of nitric oxide. Based on this property, a method for the detection of nitric oxide in aqueous solution is proposed. The detection conditions, such as supporting electrolyte, scan rate and thickness of the film were optimized. Under the optimized conditions, the catalytic currents increase linearly with the concentration of NO in the range of 3×10–71.0×10–4M, and the detection limit is 7.4×10–8M. In addition, the modified electrode is very selective with respect to interferences including ascorbic acid, dopamine, and nitrite when further modified by a Nafion film on the surface of the electrode. The experimental results indicate that the partially reduced fullerene can act as an NO sensor featuring fast response and high stability.  相似文献   

7.
A novel PVC-based membrane sensor based on the Co(II)-salophen complex (CSC) is described. The electrode revealed a Nernstian response over a wide nitrite ion concentration range (1.0×10–6–1.0×10–1M). The detection limit of the sensor is 8.0×10–7M. The best performance was obtained with a membrane composition of 33% PVC, 61% ortho-nitrophenyloctyl ether, 3% cobalt(II)-salophen, and 3% hexadecyltrimethylammonium bromide. The potentiometric response of the sensor is independent of the pH of solution in the pH range 4.5–11.9. The electrode exhibits a very fast response time and good selectivity over a variety of common inorganic and organic anions, including fluoride, bromide, iodide, sulfite, nitrate, thiocyanate, thriiodide and perchlorate. The selectivity behavior of the proposed sensor shows substantial improvements compared to the previously reported electrodes for nitrite ion. The membrane sensor can be used for at least 2 months without any divergence in potential. The electrode was successfully applied to the monitoring of nitrite ion in water, sausage, flour, wheat, cheese and milk.  相似文献   

8.
A hexafluorotantalate(V)-selective coated-graphite electrode was prepared by coating a graphite rod with brilliant green-hexafluorotantalate(V) extract in 1-chloronaphthalene in a PVC matrix. Potential measurements were made against an HF-resistant plastic sleeve (Ag/AgCl) external reference electrode. The concentrations of sulfuric and hydrofluoric acids, for the optimum response of the electrode to hexafluorotantalate(V), were found to be 1M each in the test solutions. The electrode responded to hexafluorotantalate(V) in the linear range 5.0 × 10–6-5.0 × 10–3 M, with a slope of -58 mV per decade and detection limit of 8.0 × 10–7 M within 5–15s. The relative standard deviation for six determinations of 1.0 × 10–4 M tantalum(V) was 2%. The life-time of the electrode was 60 days. The effects of forty diverse ions on the electrode response to the hexafluorotantalate(V) were studied and the electrode was found to be highly selective to hexafluorotantalate(V). Niobium, the element that commonly occurs with tantalum ores, showed a very low level of interference. The newly developed coated-graphite electrode has been applied to the determination of tantalum in tantalite-columbite ores and several synthetic matrices by direct, sample addition, standard addition, and Gran's plot potentiometric techniques with reasonable precision (2–4%) and accuracy.  相似文献   

9.
A novel amperometric nitrite sensor was developed based on the immobilization of hemoglobin/colloidal gold nanoparticles on a glassy carbon electrode by a titania sol-gel film. The sensor shows a pair of well-defined and nearly reversible cyclic voltammogram peaks for Hb Fe(III)/Fe(II) with a formal potential (E°) of –0.370 V, and the peak-to-peak separation at 100 mV s–1 was 66 mV vs. Ag/AgCl (3.0 M KCl) in a pH 6.9 phosphate buffer solution. The formal potential of the Hb Fe(III)/Fe(II) couple shifted linearly with pH with a slope of –50.0 mV/pH, indicating that electron transfer accompanies single-proton transportation. The sensor exhibited an excellent electrocatalytic response to the reduction of nitrite. The reduction overpotential was 0.45 V below that obtained at a colloidal gold nanoparticles/TiO2 sol-gel film-modified GCE. The linear range for nitrite determination for the sensor was 4.0×10–6 to 3.5×10–4 M, with a detection limit of 1.2×10–6 M. The stability, repeatability and selectivity of the sensor were also evaluated.  相似文献   

10.
A carbon paste electrode incorporating silica (Si-MCPE) was fabricated to accumulate Metamitron at the electrode surface. Several electroanalytical techniques were used to explore its reductive behaviour. The results indicate that the system is irreversible and fundamentally controlled by adsorption. The adsorptive stripping response has been evaluated with respect to accumulation time, deposition potential, scan rate, pH and other variables, using differential pulse voltammetry (DPV) and square wave voltammetry (SWV) as redissolution techniques. In both cases a voltammetric peak is obtained, at –0.542 V (DPV) and –0.421 V (SWV) in Britton-Robinson buffer (pH 1.9). The detection limits were 3.66 × 10–1 M and 4.22 × 10–9 M for AdS-DPV and AdS-SWV, respectively. Under optimum conditions the Metamitron reduction peak gave two linear regions in the range from 4.0 × 10–9 M to 8.0 × 10–8 M by means of AdS-DPV, with a coefficient of variation of 2.19% (n = 10) for 1 × 10–8 M herbicide solution. A method was developed for determination of Metamitron in soils, with a recovery of 98.8% and a coefficient of variation of 5.26% (0.01 g/g of soil).  相似文献   

11.
Azintamide was found to be reduced at the dropping mercury electrode over the pH range 1.8–9.4 in Britton Robinson buffers containing 20% methanol. At pH 7.42 a well defined diffusion-controlled cathodic wave was produced. The limiting current versus concentration plot was linear over the range 0.025–1.0 mM and 0.005–1.0 mM in the DCt and DPP modes, respectively, with a lower detection limit of 1 × 10–7 M by the latter technique. A mechanism for the electrode reaction has been proposed. The method has been applied to the determination of azintamide in tablets, and the results obtained were in agreement with those obtained by a reference method.AvH Scholar 1989–1991.  相似文献   

12.
Dinaphthyl macrocyclic polyethers were synthesized and used as neutral carriers for preparing primary amine drug sensitive PVC membrane electrodes. Contrary to the ion-associate based electrodes, which show an excellent potentiometric response to quaternary ammonium ions and the like, but a very poor response to primary amines, the macrocyclic polyether-based electrodes showed potentiometric response characteristics with primary amines preferred. Dinaphthyl macrocyclic polyether-based electrodes are superior to those based on common macrocyclic polyethers for their potentiometric selectivity coefficients much lower than those of the latter. The main characteristics of a dinaphthyl-20-crown-6-based benzyl amine sensitive electrode are as follows: linear response range, 4.2 × 10–5 – 1.0 ×10–1 M; slope, 51.3 mV/decade; and detection limit, 4.6 × 10–6 M. A mexiletine sensitive electrode was prepared using dinaphthyl-23-crown-7 with following performance features: linear response range, 2.0 × 10–5 – 1.0 ×10–1 M; slope, 52.1mV/decade; and detection limit, 5.0 × 10–6 M.  相似文献   

13.
The electrochemical properties of a glassy-carbon electrode coated with a polyvinylpyridine film doped with incorporated cobalt phthalocyanine were studied in a reaction involving a benzoquinone–hydroquinone redox couple. It was found that poly-(2-vinylpyridine) film applied to the electrode and cobalt phthalocyanine deposited onto it or incorporated in the polymeric film exhibited electrocatalytic activity on the oxidation of hydroquinone. Conditions were selected for obtaining a polyvinylpyridine film doped with cobalt phthalocyanine on the electrode surface providing a maximum catalytic effect. The current of the hydroquinone oxidation peak and the current of the reverse benzoquinone reduction peak at the chemically modified electrode were linear functions of their concentrations in the range from 1 × 10–6 to 1 × 10–3 M.  相似文献   

14.
A preconcentration and determination method for thorium in aqueous solution with a tri-n-octylphosphine oxide modified glassy carbon electrode is proposed. In the presence of 2-thenoyltrifluoroacetone, thorium in NaAc-HAc supporting electrolyte is preconcentrated on a modified rotating disk electrode, and a highly sensitive reduction peak is obtained by cathodic stripping voltammetry at –1.10 V versus Ag/AgCl. A linear response of reduction peak height and concentration is observed for 1.15×10–9–1.44×10–8 mol·1–1 of thorium and the detection limit is 1.0×10–9mol·1–1. It is very selective and sensitive, with a standard deviation of 3.4% and a recovery of 90–110%.  相似文献   

15.
The iodine quenching effect on the fluorescence of a binaphthyl-based amphiphile, C8BNC6N, was used for monitoring the Landolt-type reaction between nitrite, iodide, and thiosulfate. Due to the possibility of iodine detection in the 10–8–10–7 M range, and to the effective concentration of anionic reagents on the surface of cationic aggregates, the indicator reaction can be monitored using reagents at concentration levels as low as 10–7 M. To optimize the analytical system, the effect of pH and reagent concentrations on the rate of indicator reaction were studied. The influence of the matrix of water samples and effect of side-reactions increasing the value of a blank test were examined. A procedure for nitrite determination in water was developed, using the diazo reaction for selective nitrite removal to provide a reference solution, which avoided possible effects of the matrix components. The usefulness of this method was tested by determining trace amounts of nitrite in water samples. The procedure allows determination of nitrite down to 5 ng/ml (detection limit about 2ng/ml) with r.s.d. of 10% in the 20–250 ng/ml range.  相似文献   

16.
A novel amperometric sensor and chromatographic detector for determination of parathion has been fabricated from a multi-wall carbon nano-tube (MWCNT)/Nafion film-modified glassy-carbon electrode (GCE). The electrochemical response to parathion at the MWCNT/Nafion film electrode was investigated by cyclic voltammetry and linear sweep voltammetry. The redox current of parathion at the MWCNT/Nafion film electrode was significantly higher than that at the bare GCE, the MWCNT-modified GCE, and the Nafion-modified GCE. The results indicated that the MWCNT/Nafion film had an efficient electrocatalytic effect on the electrochemical response to parathion. The peak current was proportional to the concentration of parathion in the range 5.0×10–9–2.0×10–5 mol L–1. The detection limit was 1.0×10–9 mol L–1 (after 120 s accumulation). In high-performance liquid chromatography with electrochemical detection (HPLC–ED) a stable and sensitive current response was obtained for parathion at the MWCNT/Nafion film electrode. The linear range for parathion was over four orders of magnitude and the detection limit was 6.0×10–9 mol L–1. Application of the method for determination of parathion in rice was satisfactory.  相似文献   

17.
The electrochemical behavior of L-tyrosine was investigated at a multi-wall carbon nanotubes modified glassy carbon electrode. L-tyrosine itself showed a poor electrochemical response at the bare glassy carbon electrode; however, a multi-wall carbon nanotubes film fabricated on the glassy carbon electrode can directly enhance the electrochemical signal of L-tyrosine when applying cyclic voltammetry and square wave stripping voltammetry without any mediator. Cyclic voltammetry was carried out to study the electrochemical oxidation mechanism of L-tyrosine, which shows a totally irreversible process and an oxidation potential of 671 mV at the modified electrode and 728 mV at the bare electrode, ΔEp = 57 mV. The anodic peak current linearly increases with the square root of scan rate in the low range, suggesting that the oxidation of L-tyrosine on the multi-wall carbon nanotubes modified electrode is a diffusion-controlled process. The square wave stripping voltammetry currents of L-tyrosine at the multi-wall carbon nanotubes modified electrodes increased linearly with the concentration in the range of 2.0 × 10−6–5.0 × 10−4 mol L−1. The detection limit was 4.0 × 10−7 mol L−1. The method is simple, quick, sensitive and accurate.  相似文献   

18.
Summary An amperometric enzyme sensor composed of a mercury film electrode and an enzyme-immobilized chitosan membrane is developed. This biosensor is based on both a mercury film electrode detecting the consumption of dissolved dioxygen following enzymatic reaction, and a chitosan membrane. The latter provides an excellent permselectivity and excludes electroactive interferents. The detection range of this biosensor was 1.0×10–5–3.0×10–4 mol/l and the relative standard deviation, R.S.D. at 5.0×10–5 mol/l was 1.4% (n=3). This biosensor was applied to the direct determination of L-lactate in human serum without pretreatment.  相似文献   

19.
A graphite electrode modified with cobalt hexacyanoferrate by mechanical immobilization was used for amperometric determination of hydrazine. The modified electrode exhibits good catalytic activity for the oxidation of hydrazine at a reduced overpotential with remarkable sensitivity. The modified electrode showed a linear response for hydrazine in the concentration range of 2.0 × 10–5 to 2.8 × 10–4 M. The detection limit was 9.8 × 10–6 M (S/N = 3). The proposed modified electrode was simple, sensitive, rapid, stable and promising.  相似文献   

20.
A stable quercetin–thioglycolic acid-modified gold electrode (Qu–TCA/Au) was prepared as a self-assembled monolayer (SAM) and its electrochemical behavior was investigated by electrochemical methods. In 0.05-M phosphate buffer solution (pH 7.0) quercetin exhibits quasi-reversible signals at the Qu–TCA/Au electrode. The stability of the quercetin-modified gold electrode is very good. The quercetin self-assembled monolayer is an effective mediator for the oxidation of dopamine, which was investigated by cyclic voltammetry and differential pulse voltammetry. Ascorbic acid does not interfere with determination of dopamine at an electrode modified with a mixture of quercetin–thioglycolic acid and quercetin–11-mercaptoundecanoic acid. This modification allows dopamine to be determined in the presence of ascorbic acid in the range from 3×10–5 to 3×10–4 M. The detection limit is 1×10–6 M. Scanning electrochemical microscopy (SECM) was employed to study the electrochemical performances of the modified gold electrode indicating different feedback modes at differently modified surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号