首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulsed microwave discharges operated at atmospheric pressure in gas mixtures containing N2, O2, and NO are investigated experimentally and theoretically for various gas mixture constituents and operating conditions with respect to the ability of exhaust gas purification. The rotational gas temperature and the vibrational temperature of N2 are derived from CARS measurements. The composition of the exhaust gas after treatment is monitored using FTIR spectroscopy. The processes of the chemical, electronic, and vibrational kinetics are described by a model that has been developed to calculate the species densities. The results obtained show that in N2/NO gas mixtures an overall reduction of NOx takes place. In the case of N2/O2/NO gas mixtures, no net reduction of NOx is achieved for a pulsed microwave power below 3600 W, a pulse length of 50 s, and a typical repetition frequency of 2 kHz.  相似文献   

2.
An experimental study on the conversion of NO in the NO/N2, NO/O2/N2, NO/C2H4/N2 and NO/C2H4/O2/N2 systems has been carried out using dielectric barrier discharge (DBD) plasmas at atmospheric pressure. In the NO/N2 system, NO decomposition to N2 and O2 is the dominating reaction; NO conversion to NO2 is less significant. O2 produced from NO decomposition was detected by an on-line mass spectrometer. With the increase of NO initial concentration, the concentration of O2 produced decreases at 298 K, but slightly increases at 523 K. In the NO/O2/N2 system, NO is mainly oxidized to NO2, but NO conversion becomes very low at 523 K and over 1.6% of O2. In the NO/C2H4/N2 system, NO is reduced to N2 with about the same NO conversion as that in the NO/N2 system but without NO2 formation. In the NO/C2H4/O2/N2 system, the oxidation of NO to NO2 is dramatically promoted. At 523 K, with the increase of the energy density, NO conversion increases rapidly first, and then almost stabilizes at 93–91% of NO conversion with 61–55% of NO2 selectivity in the energy density range of 317–550 J L−1. It finally decreases gradually at high energy density. A negligible amount of N2O is formed in the above four systems. Of the four systems studied, NO conversion and NO2 selectivity of the NO/C2H4/O2/N2 system are the highest, and NO/O2/C2H4/N2 system has the lowest electrical energy consumption per NO molecule converted.  相似文献   

3.
A photo-triggered discharge is used to study the influence of three hydrocarbons (HCs), propene (C3H6), n-decane (C10H22), and toluene (C6H5CH3) on NO conversion in N2/O2/NO/HC mixtures, with 18.5% O2 concentration, 700 ppm of NO, and an hydrocarbon concentration ranging between 190 ppm and 2,700 ppm. The electrical system generates a transient homogeneous plasma, working under 400 mbar total pressure, with a 50 ns short current pulse at a repetition frequency up to a few Hz. The NO concentration at the exit of the reactor is quantified using absolute FTIR spectroscopy measurements, as a function of the specific deposited energy in the discharge and the mixture composition. Owing to the plasma homogeneity, the experimental results can be compared to predictions of a self-consistent 0-D discharge and kinetic model based on available data in the literature about reactions and their rate constants. It is shown that the addition of either propene (as for DBD or corona discharges) or n-decane to N2/O2/NO leads to an improvement of the NO removal as compared to the mixture without hydrocarbon molecules. The adopted kinetic schemes explain this effect for the two mixture types. On the other hand, both the experiments and model predictions emphasize that the addition of toluene does not lead to the improvement of NO conversion. Moreover, compounds that are useful for NO x reduction catalysis, such as aldehydes, are less produced in the mixture with toluene.  相似文献   

4.
The effect of O2 and H2O vapor on the Nitric oxide (NO) removal rate, the NO2 generation rate and the discharge characteristics were investigated using the dielectric barrier discharge (DBD) reactor at 1 atm pressure and at room temperature (20°). The results showed that the O2 present in the flue gas always hampered the removal of NO and the generation of N2O, but that the O2 could enhance the generation of NO2 in the NO/N2/O2 mixtures. Furthermore, with the increase of oxygen, the average discharge current gradually decreases in the reactor. The H2O present in N2/NO hindered the removal of NO and the generation of NO2 but had no impact on the average discharge current in the reactor in the NO/N2/H2O mixtures in which the HNO2 and HNO3 was detected. The energy efficiency of the DBD used to remove the NO from the flue gas was also estimated.  相似文献   

5.
This paper reports the results of the chemical composition modeling for an atmospheric pressure DC air discharge with water cathode. The modeling was based on the combined solution of Boltzmann equation for electrons, equations of vibrational kinetics for ground states of N2, O2, H2O and NO molecules, equations of chemical kinetics and plasma conductivity equation. Calculations were carried out using experimental values of E/N and gas temperatures for the discharge currents range of 20–50 mA. The effect of H2O concentration on the plasma composition was studied. The main particles of plasma were shown to be O2(a1Δ, b1Σ), O(3P), NO, NO2, HNO3, H2O2 and OH. Effective vibrational temperatures of molecules were higher than gas temperature and they did not depend on the discharge current. Distribution functions on vibrational levels for N2, O2, H2O and NO ground states were non-equilibrium ones.  相似文献   

6.
CO/N2, CO/Ar/O2, and CO/N2/O2 gas mixtures are optically pumped using a continuous wave CO laser. Carbon monoxide molecules absorb the laser radiation and transfer energy to nitrogen and oxygen by vibration–vibration energy exchange. Infrared emission and spontaneous Raman spectroscopy are used for diagnostics of optically pumped gases. The experiments demonstrate that strong vibrational disequilibrium can be sustained in diatomic gas mixtures at pressures up to 1 atm, with only a few Watts laser power available. At these conditions, measured first level vibrational temperatures of diatomic species are in the range TV=1900–2300 K for N2, TV=2600–3800 K for CO, and TV=2200–2800 K for O2. The translational–rotational temperature of the gases does not exceed T=700 K. Line-of-sight averaged CO vibrational level populations up to v=40 are inferred from infrared emission spectra. Vibrational level populations of CO (v=0–8), N2 (v=0–4), and O2 (v=0–8) near the axis of the focused CO laser beam are inferred from the Raman spectra of these species. The results demonstrate a possibility of sustaining stable nonequilibrium plasmas in atmospheric pressure air seeded with a few percent of carbon monoxide. The obtained experimental data are compared with modeling calculations that incorporate both major processes of molecular energy transfer and diffusion of vibrationally excited species across the spatially nonuniform excitation region, showing reasonably good agreement.  相似文献   

7.
A novel-pulsed electrolyte cathode atmospheric pressure discharge (pulsed-ECAD) plasma source driven by an alternating current (AC) power supply coupled with a high-voltage diode was generated under normal atmospheric pressure between a metal electrode and a small-sized flowing liquid cathode. The spatial distributions of the excitation, vibrational, and rotational plasma temperatures of the pulsed-ECAD were investigated. The electron excitation temperature of H Texc(H), vibrational temperature of N2 Tvib(N2), and rotational temperature of OH Trot(OH) were from 4900?±?36 to 6800?±?108 K, from 4600?±?86 to 5800?±?100 K, and from 1050?±?20 to 1140?±?10 K, respectively. The temperature characteristics of the dc solution cathode glow discharge (dc-SCGD) were also studied for the comparison with the pulsed-ECAD. The effects of operating parameters, including the discharge voltage and discharge frequency, on the plasma temperatures were investigated. The electron number densities determined in the discharge system and dc-SCGD were 3.8–18.9?×?1014?cm–3 and 2.6?×?1014 to 17.2?×?1014?cm–3, respectively.  相似文献   

8.
A pretreatment-transient reaction product analysis method was applied to study the reactions and average composition of the possible surface intermediate species in selective catalytic reduction with ethylene of NO x over Co-ZSM-5. The reactions of the surface species, formed by the pretreatment of Co-ZSM-5 in a NO/C2H4/O2 mixture at 275°C, with the NO/O2 flow produced much more N2 than that with the individual NO or O2 flow. The similarity of N2/CO x /H2O product distribution generated from the above surface species-NO/O2 reactions and that from the normal NO/C2H4/O2 flow reactions implies that the surface species NC a O b H c formed in the three-component pretreatment process is very likely the primary intermediate surface species generated during the real flow reactions. The in situ FT-IR (DRIFT) spectroscopy measurements of the surface species support the above conclusion.  相似文献   

9.
O(1D) atoms, generated via the laser photodissociation of N2O at 193 nm, reacting with N2O was studied by Time-Resolved Fourier Transform Infrared (TR-FTIR) Spectroscopy. The IR emission from NO(v? 1–11.) was collected at 30 μs after the laser was fired. Several instrumental corrections were made to obtain reliable experimental results. The vibrational temperature of the nearly-nascent NO product was estimated to be Tv ? 9,000 K. A Quasi-Classical Trajectory (QCT) calculation of the reaction was performed. The calculated results, corresponding to a head-on attack mechanism, agree with the experimental data. Additional reaction channel with side-on attack producing N2 and O2 was also studied by QCT, where vibrationally hot O2(a 1 Δg) and cold N2(X1g+) products are predicted.  相似文献   

10.
Photoionization of N2 and CO by 736–744 Å doublet lines from a Ne I resonance discharge gives photoelectron spectra which show that all vibrational levels of N2+, X2Σg+, and CO+, X2Σ+, situated below the ν′ = 0 level of the first excited ionic state, are populated. An autoionizing mechanism is proposed to interpret this result, as in the case of O2 and NO.  相似文献   

11.
The miniaturized atmospheric pressure glow discharge (APGD) generated between a solid electrode and a flowing small size liquid cathode (dimension 2 mm) was investigated here using optical emission spectroscopy. The discharge was studied in an open air atmosphere, and the spectral characteristics of the plasma source was examined. Analysed APGD was operated at a discharge voltage of 1,100–1,700 V, a discharge current of 20 mA and gaps between a solid anode and a liquid cathode in the range from 0.5 to 3.5 mm. The emission intensities of the main species were measured as a function of various experimental conditions, including the solution flow rate, the gap between the electrodes, and the concentration of hydrochloric acid. The excitation temperature, the vibrational temperatures calculated from N2, OH, and NO bands, and the rotational temperatures determined from band of OH, N2 and NO, were found to be dependent on these experimental parameters. The electron number density was determined from the Stark broadening of Hβ line. Additionally, the ionization temperature and degree were calculated using the Saha–Boltzmann equation, with the ion to atom ratio for magnesium (MgII/MgI). The results demonstrated that T exc(H), T vib(N2), T vib(OH), T vib(NO) and T rot(OH) were well comparable (~3,800–4,200 K) for selected plasma generation conditions (gap ≥2.5 mm, HCl concentration ≥0.1 mol L−1), while the rotational temperatures determined from band of N2 (~1,700–2,100 K) and band of NO (~3,000 K) were considerably lower. The electron number density was evaluated to be (3.4–6.8) × 1020 m−3 and the ionization temperature varied, throughout in the 4,900–5,200 K range.  相似文献   

12.
Selective catalytic reduction of nitrogen monoxide (NO) over a catalyst of mechanically mixed Nb/TiO2 and Mn2O3 (Mn2O3+Nb/TiO2) in an oxidizing atmosphere with propene (C3H6) was studied. The Mn2O3+Nb/TiO2 catalyst showed high activity for the reduction of NO to N2. The maximum conversion of NO to N2 was observed at 200∼300°C, with about 80% reduction of NO to N2. Mn2O3 enhanced the formation of NO2 from NO and the activation of propene to react with NO2 for reduction to N2.  相似文献   

13.
A gas-phase oxidation method using dielectric barrier discharges (DBDs) has been developed to remove SO2 and to simultaneously remove SO2 and NO from gas streams that are similar to gas streams generated by the combustion of fossil fuels. SO2 and NO removal efficiencies are evaluated as a function of applied voltage, temperature, and concentrations of SO2, NO, H2O(g), and NH3. With constant H2O(g) concentration, both SO2 and NO removal efficiencies increase with increasing temperature from 100 to 160°C. At 160°C with 15% by volume H20(g), more than 95% of the NO and 32% of the S02 are simultaneously removed from the gas stream. Injection of NH3 into the gas stream caused an increase in S02 removal efficiency to essentially 100%. These results indicate that DBD plasmas have the potential to simultaneously remove SO2 and NO from gas streams generated by large-scale fossil fuel combustors.  相似文献   

14.
In this paper, the NO-to-NO 2 conversion in various gaseous mixtures is experimentally investigated. Streamer coronas are produced with a dc-superimposed high-frequency ac power supply (10–60 kHz). According to NO x removal experiments in N 2 +NO x and N 2 +O 2 +NO x gaseous mixtures, it is supposed that the reverse reaction NO 2 +ONO+O 2 may not only limit NO 2 production in N 2 +NO x mixtures, but also increase the energy cost for NO removal. Oxygen could significantly suppress reduction reactions and enhance oxidation processes. The reduction reactions, such as N+NON 2 +O, induce negligible NO removal provided the O 2 concentration is larger than 3.6%. With adding H 2 O into the reactor, the produced NO 2 per unit removed NO can be significantly reduced due to NO 2 oxidation. NH 3 injection could also significantly decrease the produced NO 2 via NH and NH 2 - related reduction reactions. Almost 100% of NO 2 can be removed in gaseous mixtures of N 2 +O 2 +H 2 O+NO 2 with negligible NO production.  相似文献   

15.
Ab initio calculations of NO2 and NO 2 , using a Dunning [4s3p] basis augmented by 1 component diffuses andp functions were carried out. The SCF energies of NO2 and NO2/− (ground states) as a function of O s , O p , N s , and N p diffuse function exponents are given and discussed. The curves show some unexpected features which make the optimization of the diffuse function exponents problematic. The SCF vertical electron detachment energy for NO 2 as a function of the diffuse O s , O p , N s , and N p exponents is then discussed. Except for the case of O p , the detachment energy is essentially independent of the O s , N s , and N p exponents. Finally, results of SCF and MCSCF/CI calculations of the electron affinity of NO2 are given and compared with experiment. Work performed under the auspices of the Division of Basic Energy Sciences of the U.S. Department of Energy. By acceptance of this article, the publisher and/or recipient acknowledges the U.S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper.  相似文献   

16.
Massines  F.  Gouda  G.  Gherardi  N.  Duran  M.  Croquesel  E. 《Plasmas and Polymers》2001,6(1-2):35-49
Dielectric barrier discharge (DBD) is the discharge involved in corona treatment, widely used in industry to increase the wettability or the adhesion of polymer films or fibers. Usually DBD's are filamentary discharges but recently a homogeneous glow DBD has been obtained. The aim of this paper is to compare polypropylene surface transformations realized with filamentary and glow DBD in different atmospheres (He, N2, N2 + O2 mixtures) and to determine the relative influence of both the discharge regime and the gas nature, on the polypropylene surface transformations. From wettability and XPS results it is shown that the discharge regime can have a significant effect on the surface transformations, because it changes both the ratio of electrons to gas metastables, and the space distribution of the plasma active species. This last parameter is important at atmospheric pressure because the mean free paths are short (m). These two points explain why in He, polypropylene wettability increase is greater by a glow DBD than by a filamentary DBD. In N2, no significant effect of the discharge regime is observed because electrons and metastables lead to the same active species throughout the gas bulk. The specificity of a DBD in N2 atmosphere compared to an atmosphere containing oxygen is that it allows very extensive surface transformations and a greater increase of the polypropylene surface wettability. Indeed, even in low concentration and independently of the discharge regime, when O2 is present in the plasma gas, it controls the surface chemistry and degradation occurs.  相似文献   

17.
A diagnostic study q (energy transfer processes in a He-N2 flowing discharge and afterglow has been performed in a radiofrequency-produced plasma cooled in a liquid nitrogen hath. Optical emission spectroscopy in the visible and infrared spectral range as well as Langrnuir probe diagnostics were used. The vibrational kinetics of CO injected in such an afterglow has been examined. It shows a slow cooling of the electrons in the afterglow regime. The electron kinetics responsible joy CO vibrahonal excitation is turned off when N2 is added to the He discharge, while that for vibrationally excited N2 molecules is turned on. The results are discussed on the basis of previous theorerical calculations and experiments on the He-N2 system.  相似文献   

18.
用沉积沉淀法合成两种不同系列的CeO2-ZrO2-La2O3混合氧化物(ZrO2和La2O3沉积CeO2粒子(标记为A-x)以及CeO2和La2O3沉积ZrO2粒子(标记为B-x)),并用作Rh催化剂的载体。XRD、拉曼、TPR、XPS和O2脉冲等表征结果显示出不同的沉积顺序将导致不同的结构和氧化还原性能,且B-x具有更高的氧迁移性、储氧能力和表面Ce浓度。当其负载Rh后,Rh/B-x催化剂具有更高的NO和CO转化率及N2选择性,且Ce的最佳含量为50at%。这可能归因于Rh负载于富铈表面形成更多有利于NO分解的表面Ce3+活性位。  相似文献   

19.
Present study was carried out to investigate the conversion of NO by simultaneous action of the dielectric barrier discharge (DBD) and TiO2 catalyst. NO conversion was recorded as a function of the input energy density by varying the percentage of NO and O2. NO conversion efficiency increased at higher content of O2. The presence of a TiO2 coating inside the reactor resulted in initially enhanced NO conversion but in few minutes the positive effect of TiO2 diminished. The increased conversion of NO in initial stage of the process was more pronounced at higher densities of input energy (higher than 100 J/l) and at lower O2 concentrations, but without O2 the TiO2 coating had no effect on the conversion of NO. The results indicate that the conversion of NO during first few minutes is related to the surface reactions with adsorbed atomic oxygen.  相似文献   

20.
Pulsed corona discharge process was applied to the removal of sulfur dioxide and nitrogen oxides from simulated flue gas. The energy transfer efficiency of the pulse generation circuit and the energy utilization efficiencies for SO 2 and NO removal are evaluated and discussed. When the pulse-forming capacitance was five times larger than the geometric capacitance of the reactor, the energy utilization efficiency was maximized, and the energy requirements for NO and SO 2 removal could be lowered. With regard to radical utilization efficiency, producing small amounts of radicals frequently was found to be more advantageous than producing large amounts of radicals less frequently. Removal efficiency of SO 2 increased with the applied peak voltage, but the energy utilization efficiency was nearly independent of the peak voltage when the peak field intensity was high enough to induce corona discharge (above 10 kV cm –1 in this system).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号