首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The new molybdenum nitrido-thiolate complex N triple bond Mo(SAd)3 (Ad = 1-adamantyl) was prepared by a ligand exchange route involving reaction of Ti(SAd)(OiPr)3 with Chisholm's nitrido-butoxide complex N triple bond Mo(OtBu)3. In an effort to abstract the nitrido nitrogen from N triple bond Mo(SAd)3, the compound was treated with Mo(N[tBu]Ph)3, a three-coordinate molybdenum(III) complex. This resulted in formation of the unusual and thermally unstable (mu-nitrido)dimolybdenum complex (AdS)3Mo(mu-N)Mo(N[tBu]Ph)3, which was isolated and characterized. An X-ray study revealed (AdS)3Mo(mu-N)Mo(N[tBu]Ph)3 to possess an unsymmetrical Mo-(mu-N)-Mo linkage, the Mo-thiolate fragment exhibiting a substantially longer bond to the bridging nitrogen atom. The structure of (AdS)3Mo-(mu-N)Mo(N[tBu]Ph)3 is noteworthy, displaying trigonal monopyramidal coordination at the (mu-N)-Mo-thiolate Mo center. Since N triple bond Mo(N[tBu]Ph)3 is a good leaving group, (AdS)3Mo(mu-N)Mo(N[tBu]Ph)3 should be a source of the reactive Mo(SAd)3 fragment. In all the studied reactions of the (mu-nitrido)dimolybdenum complex one of the observed products was N triple bond Mo(N[tBu]Ph)3. Two products containing the Mo(SAd)3 fragment were observed: (AdS)3Mo triple bond Mo(SAd)3 and [(ON)Mo(mu-SAd)(SAd)2]2. Upon treatment with pyridine, the tris(thio-1-adamantyl)-(nitrosyl)molybdenum dimer forms the pyridine adduct (AdS)3Mo(NO)(py), which is a monomer.  相似文献   

2.
3.
In the present work we report on our investigation on the corrosion properties of the ethyl-dimethyl-propylammonium bis(trifluoromethylsulphonyl)imide at temperatures up to 473 K. The tests were performed both for commercially pure iron alloys and for pure copper. The electrochemical measurements showed that the metals corrosion rates can be dramatically reduced by purging the ionic liquid with inert gases to remove the dissolved oxygen.  相似文献   

4.
5.
6.
The electrochemical oxidation of ammonia was investigated on a Ni/Ni(OH)2 electrode prepared by potential cycling of a Ni electrode in 1 M NaClO4. It was found that oxidation of ammonia is strongly pH dependent and proceeds mainly at pH values above 7. This indicates that NH3 rather than NH4+ is oxidized on nickel electrodes. Oxidation of ammonia occurs in the potential region of Ni(II)/Ni(III) redox activity resulting in formation of a clear peak. Ni/Ni(OH)2 is not deactivated during ammonia oxidation even at high ammonia concentrations. A considerable fraction of the ammonia was oxidized to nitrate (11%), while the rest were gaseous nitrogen compounds. It is postulated that nitrogen was formed via a mechanism involving direct electron transfer from ammonia to the anode whereas the formation of nitrate involved oxygen transfer from water to an ammonia molecule.  相似文献   

7.
The reduction of diazene complexes [Mo(2)Cp(2)(mu-SMe)(3)(mu-eta(2)-H-N=N-R)](+) (R=Ph (3 a); Me (3 b)) and of the hydrazido(2-) derivative [Mo(2)Cp(2)(mu-SMe)(3)[mu-eta(1)-N=N(Me)H]](+) (1 b) has been studied by cyclic voltammetry, controlled-potential electrolysis, and coulometry in THF. The electrochemical reduction of 3 a in the presence of acid leads to cleavage of the N=N bond and produces aniline and either the amido complex [Mo(2)Cp(2)(mu-SMe)(3)(mu-NH(2))] 4 or the ammine complex [Mo(2)Cp(2)(mu-SMe)(3)(NH(3))(X)] 5, depending on the initial concentration of acid (HX=HTsO or CF(3)CO(2)H). The N=N bond of the methyldiazene analogue 3 b is not cleaved under the same conditions. The ability of 3 a but not 3 b to undergo reductive cleavage of the N=N bond is attributed to electronic control of the strength of the Mo-N(R) bond by the R group. The electrochemical reduction of the methylhydrazido(2-) compound 1 b in the presence of HX also results in cleavage of the N=N bond, with formation of methylamine, 4 (or 5) and the methyldiazenido complex [Mo(2)Cp(2)(mu-SMe)(3)(mu-eta(1)-N=N-Me)]. Formation of the last of these complexes indicates that two mechanisms (N=N bond cleavage and possibly H(2) production) are operative. A pathway for the reduction of N(2) at a dinuclear site of FeMoco is proposed on the basis of these results.  相似文献   

8.
The electrochemical reduction of the monocation of bis-(cyclo-octadiene)Rh[(COD)2Rh+] has been studied in chlorinated hydrocarbons and d6-acetone by cyclic voltammetry, chronoamperometry and exhaustive coulometry. Successive one-electron reductions are observed for the couples (COD)2Rh+/(COD)2Rh and (COD)2Rh/(COD)2Rh at -1.34 V vs. Fc and -1.93 V vs. Fc respectively. The 17-electron Rh(0) radical (COD)2Rh abstracts a Cl atom from CH2Cl2 to give the dinuclear complex [(COD)Rh(μ-Cl)]2 in high yield at 298 K. At subambient temperatures this reaction is suppressed and the dominant decomposition product is apparently (COD)Rh(C8H13), formed by H atom abstraction by (COD)2Rh from solvent and/or adventitious water. Electrolysis products were characterized by electron spin resonance (ESR), nuclear magnetic resonance (NMR) and mass spectrometry. The reactivity of the radical is rationalized by a bonding model in which the lowest unoccupied molecular orbital (LUMO) is dx2−y2 with some diolefin mixing. ESR measurements are consistent with this model and suggest that the COD ligands form a ligand field around Rh which is closer to square planar than to tetrahedral.  相似文献   

9.
Ammonia is an important chemical used in the production of fertilizers. The electrochemical nitrogen reduction reaction (NRR) to synthesize ammonia has emerged to be a potential alternative approach. Here, we provide a short opinion of the current progress and challenges of nitrogen reduction reaction from the recent literature. Different types of electrocatalysts with their performances and design principles are briefly outlined. However, most of the electrocatalysts showed unsatisfactory catalytic performance for NRR because of various factors, such as the competing side reactions and the large thermodynamic energy barrier. Hence, the concept of conducting NRR should be re-evaluated. We provide our opinion on the future possible outlook on how to improve the NRR performance. Alternative external energy input should be coupled with the electrochemical reduction of nitrogen to help with the activation of nitrogen to ammonia. Some possible energy input could be the use of cold plasma and surface plasmon resonance.  相似文献   

10.
The complexes formed in the interaction between copper(II) anda-andβ-galacturonic acid, in the pH range 2.5–11.0, have been investigated by means of d.c. polarography and cyclic voltammetry. Witha-galacturonic acid, no complex is formed with copper up to pH 6. Between pH 6 and about 9.5, a complex is formed in solution. Above pH 9.5, the complex appears to break up releasing the ligand. In the case of β-galacturanic acid, no complex is formed until pH 3.5, and persists in solution up to a pH of about 9.5. A second complex forms above pH 6.9 and co-exists with the first complex up to pH 9.5. The complexes formed with both forms of galacturonic acid were studied and the stability constant of the coppera-galacturonate determined.  相似文献   

11.
12.
The electrochemical reduction of oxygen at a porous flow-through electrode is described with emphasis on the effects of concentration, flow speed and surface area. On a packed bed copper electrode in sulfuric acid, it was found that oxygen undergoes a two electron reduction process giving rise to H2O2.  相似文献   

13.
Conditions were established for the electrochemical generation of manganese(III) at glassy carbon in acetic acid. In the oxidation of manganese-(II) in potassium acetate supporting electrolyte high current efficiencies were achieved in a wide range of current densities at the working electrode, whereas in the presence of sodium perchlorate a successful generation of manganese(III) could be performed only at low current densities. With increasing content of water in the anolyte the amount of generated manganese (III) was abruptly decreased and its stability in the solution was diminished. Procedures are given for a successful coulometric titration of reducing substances with anodically generated manganese (III); biamperometric, potentiometric and bipotentiometric methods for the location of the end-point were employed. The error of the determinations did not exceed ± 2%.  相似文献   

14.
《Tetrahedron letters》1987,28(11):1173-1174
A procedure of electrochemical reduction in liquid ammonia using a single-compartment cell equiped with a soluble anode is described and illustrated in the case of aromatic compounds and esters.  相似文献   

15.
《Polyhedron》1999,18(23):2981-2985
The reaction of [{Ru(η6-C6H6)Cl(μ-Cl)}2] with Py3COH in ethanol results in the formation of the cation [Ru(η6-C6H6)(N,N′,O,-(C5H4N)3CO)]+ which is isolated as its hexafluorphosphate salt 1. The cation acts as a ligand towards other transition metal ions. With Ag+ the hetero-trinuclear complex [{Ru(η6-C6H6)((C5H4N)3CO)}2Ag][PF6]3 2 is formed, while reaction with [Pd(PhCN)2Cl2] gives the bimetallic [Ru(η6-C6H6)((C5H4N)3CO)PdCl2][PF6] 3. Both compounds were fully characterised by spectroscopic methods and the trinuclear complex was additionally characterised by X-ray diffraction.  相似文献   

16.
The electrochemical behaviour of Os(bpy)32+ (bpy=2,2′-bipyridine) has been investigated in N,N-dimethylformamide by utilizing predominantly the techniques of polarography and cyclic voltammetry. The study has been carried out at different temperatures in the range ?20 to +30° C. The number of reduction waves observed depends markedly on temperature. For intermediate temperatures, the complex exhibits six reduction waves, the maximum number of waves observed as a function of temperature.The first three reduction processes, corresponding to the first three reduction waves, are one-electron, diffusion-controlled reversible processes in all conditions. Conversely, process four is consistent with one-electron reversible transfer only at the lowest temperature. In fact, for higher temperatures the liberation of bpy, preferentially as a radical anion rather than a neutral molecule, occurs. In the latter case, the liberated neutral bpy molecule can be reduced by one-electron transfer. Process five is due to the reduction of species formed by chemical reaction in the preceding electrode process, i.e. the bpy radical anion and Os(bpy)21?. Process six is consistent with the addition of five electrons to the starting complex, followed by the liberation and successive reduction of the bpy radical anion.  相似文献   

17.
A tripodal ligand, tris(2-pyridyl)carbinol, affords a novel tetradentate coordination mode in homodinuclear lanthanide complexes, which exhibit remarkably short distances between metal ions. The strong luminescences of Eu(III) and Tb(III) complexes with the ligand demonstrate that the ligand has a suitable excited state for energy transfer from the ligand to the Eu(III) and Tb(III) centers, respectively.  相似文献   

18.
19.
The metathesis reaction of potassium (tris(tert-butyl)silyl)phosphanide with GaCl(3) in a molar ratio of 1:1 leads to the formation of [Cl(2)GaP(H)Si(t)Bu(3)](2) (1) as a mixture of cis and trans isomers with very large (1)J(P,H) and (2)J(P,P) coupling constants. The molecular structure of 1 shows a Ga(2)P(2) cycle with nearly planar coordinated phosphorus atoms under neglection of the hydrogen atoms and Ga-P distances of 239 pm. The reaction of GaCl(3) with 3 equiv of potassium (tris(tert-butyl)silyl)phosphanide as well as the reaction of 1 with 2 equiv of KP(H)Si(t)Bu(3) yields [(t)Bu(3)SiP(H)Ga(mu-PSi(t)Bu(3))](2) (2). The central moiety comprises a four-membered Ga(2)P(2) cycle with one planar P atom and extremely short Ga-P bonds of approximately 226 pm, the other being in a pyramidal environment with an angle sum of 298.4 degrees. The structure of 2 can be described as a GaPGa heteroallyl system which is bonded to a phosphanidyl substituent. This idea and its dependency on the steric demand of the trialkylsilyl groups are investigated by DFT calculations on different isomers of 2.  相似文献   

20.
We report the first tris(alkoxide)V(III) complex to bind dinitrogen. Removal of THF from V(OR)(3)THF furnishes the highly reactive V(OR)(3) fragment, which binds dinitrogen to form [V(OR)(3)](2)(μ-N(2)) in the solid state. Dinitrogen is readily released upon dissolution of the complex. Structural and DFT studies are consistent with significant activation of N(2) when bound by the vanadium tris(alkoxide) platform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号