首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By spin trapping, using 2-methyl-2-nitrosopropane (t-BuNO), the EPR signals of vinyl-tert-butylnitroxyls and spin adducts of t-BuNO with products of the addition of 2-substituted pyrrole radicals to acetylenes were recorded during the vinylation of 2-substituted pyrroles with acetylenes in a KOH-DMSO system. The 2-substituted pyrrole radicals have a high stability, and their EPR spectra were observed directly in the vinylation reactions. It is shown that one-electron transfer processes are involved in vinylation.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1056–1062, August, 1992.  相似文献   

2.
A series of 3-aryl-2H-benzo[1,4]oxazin-4-oxides was prepared, and their ability to trap free radicals was investigated by EPR spectroscopy. In organic solvents, these compounds were able to efficiently scavenge all carbon- and oxygen-centered radicals tested, giving very persistent aminoxyls, except with superoxide anion whose spin adducts were unstable. The main feature of these nitrones as spin traps lies in the possibility to recognize the initial radical trapped. In fact, besides a g-factor and aminoxyl nitrogen EPR coupling constant dependence on the species trapped, the EPR spectra also show different patterns due to hyperfine splittings characteristic of the radical scavenged. This last important feature was investigated by means of density functional theory calculations.  相似文献   

3.
The propagating radical in the emulsion polymerization reaction of butyl acrylate was detected by Electron Paramagnetic Resonance (EPR) spectroscopy using two spin-trapping agents, 2-methyl-2-nitrosopropane (MNP) and α-(4-pyridyl 1-oxide)-N-tert-butylnitrone (PyOBN). Through analysis of hyperfine structure of the spectra obtainedfrom the trapped radicals, the propagating radical is inferred to be the well known acrylate radical, ? [CH2? CH(COOC4H9)]n? CH2? CH(COOC4H9)? . © 1994 John Wiley & Sons, Inc.  相似文献   

4.
Irradiation of chloramine-T at alkaline pH in the presence of the spin trap 2-methyl-2-nitrosopropane gave evidence for the trapping of several sulfur-centred radicals and a carbon-centred radical. Trapping experiments with 5,5-dimethyl-pyrrolidine-1-oxide gave evidence for the production of a nitrogen- centred radical and a carbon-centred radical. The spin trap α-phenyl-t-butyl-nitrone gave evidence for a nitrogen-centred radical, a sulfur-centred radical and the H-atom adduct of the spin trap. The identity of the trapped species was confirmed by irradiation of the following chemical analogues of chloramine-T as “model [compounds” in alkaline solution; chloramine-B (sodium salt of N-chlorobenzene sulfonamide), p-toluenesulfonamide, p-toluenesulfonic acid, p-toluenesulfinic acid. To aid in the assignment of the radical adducts where mixtures of species occurred, computer simulation of the spectra was performed.  相似文献   

5.
Abstract Compounds possessing a pyridine-2-thione moiety show antimicrobial, antifungal and anticancer activities. Some of them are also photochemically active and upon UV irradiation generate free radicals. In this work, employing EPR and the spin traps 2-methyl-2-nitrosopropane (MNP) and aci-nitromethane (NM), we investigated the photochemistry in aqueous solutions of N-hydroxypyridine-2-thione (used here as a sodium salt, 2-S-PyrNONa), and pyridine-2-thione (2-S-PryH), as well as photochemistry of the respective disulfides, 2,2′-dithiobis(pyridine N-oxide) [(2-S-PyrN→O)2] and 2,2′-dithiodipyridine [(2-S-Pyr)2]. We found that UV irradiation of 2-S-PyrNONa and of 2-S-PyrH in the presence of MNP and NM generates EPR signals of reduced spin traps in addition to signals of MNP and NM adducts with aryl-thiyl radicals, 2–.S-PyrN→O and 2–.S-Pyr. The identification of the aromatic thiyl radicals was based on comparison of EPR spectra of spin adducts generated by irradiation of 2-S-PyrNONa and 2-S-PyrH with those produced by UV photolysis of the respective disulfides (2-S-PyrN→O), and (2-S-Pyr)2. It is concluded that pyridine-2-thione and N-hydroxypyridine-2-thione possess a photoreducing capacity and generate aromatic thiyl radicals upon UV activation. This property may be relevant to biological action of agents containing the pyridine-2-thione moiety.  相似文献   

6.
We proposed EPR spectroscopy using spin-trap DEPMPO as a novel method for the detection of a hydrogen atom (*H) produced by chemical and biological systems. In complex EPR spectra of DEPMPO adducts in biological systems, spectral lines of unknown origin have been observed. We have assumed (Baci?, G.; Mojovi?, M. Ann. N. Y. Acad. Sci. 2005, 1048, 230-243) that those lines represent the spectrum of a hydrogen atom (*H) adduct i.e., DEPMPO/H. An electrochemical system known to produce only *H radicals was used here in order to obtain a separate spectrum of the DEPMPO/H adduct. An acquired spectrum as well as a computer spectral simulation of the DEPMPO/H adduct showed considerable resemblance with additional lines in the EPR spectra of DEPMPO adducts in biological systems-plant plasma membranes and cell walls. This shows that such a radical is produced by plants as well as that DEPMPO is suitable for detection in both electrochemical and biological systems.  相似文献   

7.
Synthesis and characterization of new carbazolyl derivatives with a pendant stable radical of the TTM (tris-2,4,6-trichlorophenylmethyl radical) series are reported. The EPR spectra, electrochemical properties, absorption spectra, and luminescent properties of these radical adducts have been studied. All of them show electrochemical amphotericity being reduced and oxidized to their corresponding stable charged species. The luminescence properties of them cover the red spectral band of the emission. The luminescence of the electron-rich carbazole adducts shows the donor-acceptor nature of the excited state. On the other hand, the EPR parameters of these radical adducts show an imperceptible variation with the substituents in the carbazole.  相似文献   

8.
We designed a new type of spin-labeled nucleosides with an N-tert-butylaminoxyl radical which is introduced to the nucleobase directly. Purine and pyrimidine ribonucleosides containing the aminoxyl radical such as 1a-d, 2, 3, and 4 were synthesized to investigate the stability and behavior of the N-tert-butylaminoxyl radical on a nucleobase. Lithiation of tri-O-silylated 6-chloropurine ribonucleoside (5) followed by reaction with 2-methyl-2-nitrosopropane (MNP) gave the key compound 6a, which was further converted to 6b-d. Oxidation of the obtained 6a-d and their triols (7a-d) with Ag(2)O led to formation of the corresponding stable spin-labeled nucleosides (8a-d and 1a-d), which were confirmed by EPR spectroscopy. Similarly, the precursors of spin-labeled pyrimidines (13, 20, and 23) were synthesized by site-selective lithiation of tri-O-protected pyrimidine derivatives (9, 18, and 21) followed by the reaction with MNP and deprotection. An EPR study showed that the aminoxyl radicals (2, 3, and 4) were stable and that their hyperfine structures were dependent on the position of the radical. Electron densities of pyrimidine also affected hyperfine structures.  相似文献   

9.
Three analogues of 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO, 1) labelled with two (1-d2), five (1-d5) or seven (1-d7)2H were synthesized and used to trap the tert-butylperoxyl radical. The EPR spectra of 1-d2-OOBu(t) and 1-d7-OOBu(t) spin adducts exhibited more straightforward patterns and better signal to noise ratio than those obtained with 1 or 1-d5. The use of the easily available 1-d2 as spin trap could help significantly the analysis of the EPR signals when the signal of either superoxide or alkylperoxyl spin adduct is superimposed with the signals of other spin adducts.  相似文献   

10.
Linoleic acid radical products formed by radical reaction (Fenton conditions) were trapped using 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) and analysed by reversed-phase liquid chromatography coupled to electrospray mass spectrometry (LC-MS). The linoleic acid radical species detected as DMPO spin adducts comprised oxidized linoleic acid and short-chain radical species that resulted from the breakdown of carbon and oxygen centred radicals. Based on the m/z values, the short-chain products were identified as alkyl and carboxylic acid DMPO radical adducts that exhibited different elution times. The ions identified as DMPO radical adducts were studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The LC-MS/MS spectra of linoleic acid DMPO radical adducts exhibited the fragment ion at m/z 114 and/or the loss of neutral molecule of 113 Da (DMPO) or 131 Da (DMPO + H2O), indicated to be DMPO adducts. The short-chain products identified allowed inference of the radical oxidation along the linoleic acid chain by abstraction of hydrogen atoms in carbon atoms ranging from C-8 to C-14. Other ions containing the fragment ion at m/z 114 in the LC-MS/MS spectra were attributed to DMPO adducts of unsaturated aldehydes, hydroxy-aldehydes and oxocarboxylic acids. The identification of aldehydic products formed by radical oxidation of linoleic acid peroxidation products, as short-chain product DMPO adducts, is a means of identifying lipid peroxidation products.  相似文献   

11.
Abstract— The clinically important phenothiazine drugs, particularly chlorpromazine, often elicit phototoxic and photoallergic reactions. We have used the spin traps 2-methyl-2-nitrosopropane (MNP) and 5,5-dimethyl-pyrroline-N-oxide (DMPO) to define the radical photolysis pathways of chlorpromazine and promazine. In the absence of oxygen the dechlorination product of chlorpromazine is trapped by MNP. The reactivity of the dechlorination product is similar to that of the phenyl radical as shown by its ability to extract hydrogen atoms from donors. Our results suggest that the dechlorination product is sufficiently reactive to account for the observation that chlorpromazine is more phototoxic than its parent promazine. In the presence of oxygen both chlorpromazine and promazine form a superoxide-dismutase-insensitive oxygen-centered intermediate which, when trapped by DMPO, rapidly decays to DMPO-OOH and subsequently to DMPO-OH. In addition, chlorpromazine readily undergoes photoelectron ejection only when it is excited into the second excited singlet state (Δ < 280 nra). This previously unknown wavelength dependence of photoionization should be considered in establishing the mechanism of chlorpromazine photosensitization.  相似文献   

12.
The 2-(3-methylenepiperidinyl)ethyl radical (6) displays considerable reluctance to ring-closure under conditions which its carbocyclic analog, the 2-(3-methylenecyclohexyl)ethyl radical (2), cyclizes essentially completely. Molecular mechanics calculations suggest that the increased activation barrier associated with ring-closure of 6 is the result of a higher than expected transition state energy. A study of the behavior of beta-ammonio-substituted 5-hexenyl radicals, such as the 3,3-dimethyl-3-azonia-5-hexenyl radical (22), reveals that cyclization occurs readily. Treatment of 1-methyl-1-(2-(phenylselenyl)ethyl)-3-methylenepiperidinium iodide (20) with tributyltin hydride in tert-amyl alcohol yields the bridgehead nitrogen bicyclic heterocycle, 1,5-dimethyl-1-azoniabicyclo[3.2.1]octane iodide (26), in excellent yield and without contamination, thus providing an attractive synthetic route to this hitherto unknown heterocyclic system.  相似文献   

13.
Reaction of the stable silylene, 1,3-di-tert-butyl-1,3,2-diazasilol-2-ylidene, with the free radical sources TEMPO, Hg[P(O)(OPri)2]2, (CO)3CpM-MCp(CO)3 (M = W, Mo), (CO)5Re-Re(CO)5, and toluene leads to radical adducts. The EPR spectra of these radicals indicate that the unpaired electron is delocalized over the silicon-containing five-membered ring.  相似文献   

14.
From the reactions between [M2(O2CtBu)4] and 9,10-anthracenedicarboxylic acid in toluene, the dicarboxylate bridged complexes [[M2(O2CtBu)3]2(mu-9,10An(CO2)2)], have been obtained as microcrystalline yellow (M = Mo) and red (M = W) powders. The powders are soluble in THF forming intense red (M = Mo) and green (M = W) solutions. The electronic absorption spectra in 2-MeTHF have been recorded as a function of temperature (2-298 K) and show a small bathochromic shift on cooling. The electronic structures have been investigated by molecular orbital calculations employing density functional theory on the model compounds [(HCO2)3M2]2(mu-9,10-An(CO2)2) where the M4 unit is constrained to lie in a plane. These reveal a minimum energy, gas-phase structure wherein the plane of the anthracene is twisted by ca. 54 degrees with respect to its 9,10-carboxylate units for both Mo and W. The results of these calculations are correlated with the electronic absorption spectral data and the electrochemical measurements (CV and DPV) of the first and second oxidation waves. The EPR spectra of the radical cations formed by single-electron oxidation with [Cp2Fe](+)[PF6]- in a THF-CH2Cl2 solvent mixture show that the complexes are valence trapped at ambient temperature on the EPR timescale. These results are discussed in the light of recent studies of dicarboxylate-linked MM quadruple bonds.  相似文献   

15.
It has been shown by EPR, using 2-methyl-2-nitrosopropane as a radical trap, that vinylation of 4,5,6,7-tetrahydroindole with phenylacetylene in the system KOH-DMSO involves the formation of the 4,5,6,7-tetrahydroindolyl radical by transfer of an electron from the 4,5,6,7-tetrahydroindole anion to the acetylene.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 1, pp. 142–144, January, 1990.  相似文献   

16.
Many electron spin resonance (ESR) spectra of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) radical adducts from the reaction of organic hydroperoxides with heme proteins or Fe(2+) were assigned to the adducts of DMPO with peroxyl, alkoxyl, and alkyl radicals. In particular, the controversial assignment of DMPO/peroxyl radical adducts was based on the close similarity of their ESR spectra to that of the DMPO/superoxide radical adduct in conjunction with their insensitivity to superoxide dismutase, which distinguishes the peroxyl adducts from the DMPO/superoxide adduct. Although recent reports assigned the spectra suggested to be DMPO/peroxyl radical adducts to the DMPO/methoxyl adduct based on independent synthesis of the adduct and/or (17)O-labeling, (17)O-labeling is extremely expensive, and both of these assignments were still based on hyperfine coupling constants, which have not been confirmed by independent techniques. In this study, we have used online high performance liquid chromatography (HPLC or LC)/ESR, electrospray ionization-mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) to separate and directly characterize DMPO oxygen-centered radical adducts formed from the reaction of Fe(2+) with t-butyl or cumene hydroperoxide. In each reaction system, two DMPO oxygen-centered radical adducts were separated and detected by online LC/ESR. The first DMPO radical adduct from both systems showed identical chromatographic retention times (t(R) = 9.6 min) and hyperfine coupling constants (a(N) = 14.51 G, a(H)(beta) = 10.71 G, and a(H)(gamma) = 1.32 G). The ESI-MS and MS/MS spectra demonstrated that this radical was the DMPO/methoxyl radical adduct, not the peroxyl radical adduct as was thought at one time, although its ESR spectrum is nearly identical to that of the DMPO/superoxide radical adduct. Similarly, based on their MS/MS spectra, we verified that the second adducts (a(N) = 14.86 G and a(H)(beta) = 16.06 G in the reaction system containing t-butyl hydroperoxide and a(N) = 14.60 G and a(H)(beta) = 15.61 G in the reaction mixture containing cumene hydroperoxide), previously assigned as DMPO adducts of t-butyloxyl and cumyloxyl radical, were indeed from trapping t-butyloxyl and cumyloxyl radicals, respectively.  相似文献   

17.
Diacetyl, methylglyoxal, and glyoxal are α-dicarbonyl catabolites prone to nucleophilic additions of amino groups of proteins and nucleobases, thereby triggering adverse biological responses. Because of their electrophilicity, in aqueous medium, they exist in a phosphate-catalyzed dynamic equilibrium with their hydrate forms. Diacetyl and methylglyoxal can be attacked by peroxynitrite (k(2) ≈ 1.0 × 10(4) M(-1) s(-1) and k(2) ≈ 1.0 × 10(5) M(-1) s(-1), respectively), a potent biological nucleophile and oxidant, yielding the acetyl radical from the homolysis of peroxynitrosocarbonyl adducts, and acetate or formate ions, respectively. We report here that glyoxal also reacts with peroxynitrite, yielding formate ion at rates at least 1 order of magnitude greater than does methylglyoxal. A triplet EPR signal (1:2:1; a(H) = 0.78 mT) attributable to hydrated formyl radical was detected by direct flow experiments. In the presence of the spin trap 2-methyl-2-nitrosopropane, the EPR spectrum displays the di-tert-butyl nitroxide signal, another signal assignable to the spin trapping adduct with hydrogen radical (a(N) = a(H) = 1.44 mT), probably formed from formyl radical decarbonylation, and a third EPR signal assignable to the formyl radical adduct of the spin trap (a(N) = 0.71 mT and a(H) = 0.14 mT). The novelty here is the detection of singlet oxygen ((1)Δ(g)) monomol light emission at 1270 nm during the reaction, probably formed by subsequent dioxygen addition to formyl radical and a Russell reaction of nascent formylperoxyl radicals. Accordingly, the near-infrared emission increases upon raising the peroxynitrite concentration in D(2)O buffer and is suppressed upon addition of O(2) ((1)Δ(g)) quenchers (NaN(3), l-His, H(2)O). Unequivocal evidence of O(2) ((1)Δ(g)) generation was also obtained by chemical trapping of (18)O(2) ((1)Δ(g)) with anthracene-9,10-divinylsulfonate, using HPLC/MS/MS for detection of the corresponding 9,10-endoperoxide derivative. Our studies add insights into the molecular events underlying nitrosative, oxidative, and carbonyl stress in inflammatory processes and aging-associated maladies.  相似文献   

18.
Here we describe the synthesis and characterisation of a new isoindole-based nitrone spin trap, 1,1,3-trimethylisoindole N-oxide (TMINO). This nitrone and its radical adducts (isoindoline nitroxides) exhibit enhanced stability with respect to other commonly used spin traps and their adducts. We also report EPR trapping studies of this new nitrone with some carbon- and oxygen-centred radicals including alkyl, aryl, hydroxyl and benzoyloxyl systems. The narrow EPR line-widths and stability of the resulting nitroxide spin adducts allowed the detection of the expected radicals as well as secondary and minor radical components in the reaction mixtures.  相似文献   

19.
Lipid peroxidation is often initiated using Cu(II) ions. It is widely assumed that Cu(II) oxidizes preformed lipid hydroperoxides to peroxyl radicals, which propagate oxidation of the parent fatty acid via hydrogen atom abstraction. However, the oxidation of alkyl hydroperoxides by Cu(II) is thermodynamically unfavorable. An alternative means by which Cu(II) ions could initiate lipid peroxidation is by their one-electron reduction of lipid hydroperoxides to alkoxyl radicals, which would be accompanied by the generation of Cu(III). We have investigated by EPR spectroscopy, in conjunction with the spin trap 5,5-dimethyl-1-pyrroline N-oxide, the reactions of various Cu(II) chelates with tert-butylhydroperoxide. Spectra contained signals from the tert-butoxyl, methyl, and methoxyl radical adducts. In many previous studies, the signal from the methoxyl adduct has been assigned incorrectly to the tert-butylperoxyl adduct, which is now known to be unstable, releasing the tert-butoxyl radical upon decomposition. This either is trapped by 5,5-dimethyl-1-pyrroline N-oxide or undergoes beta-scission to the methyl radical, which either is trapped or reacts with molecular oxygen to give, ultimately, the methoxyl radical adduct. By using metal chelates that are known to be specific in either their oxidation or reduction of tert-butylhydroperoxide (the Cu(II) complex of bathocuproine disulfonic acid and the Fe(II) complex of diethylenetriaminepentaacetic acid, respectively) for comparison, we have been able to deduce, from the relative concentrations of the three radical adducts, that the Cu(II) complexes tested each reduce tert-butylhydroperoxide directly to the tert-butoxyl radical. These findings suggest that a previously overlooked reaction, namely the direct reduction of preformed lipid hydroperoxides to alkoxyl radicals by Cu(II), may be responsible for the initiation of lipid peroxidation by Cu(II) ions.  相似文献   

20.
Radical adducts of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) with hydroxyl, methanol-derived, and ethanol-derived radicals were detected by a combination of liquid chromatography with either electron paramagnetic resonance or thermospray mass spectrometry (LC/EPR or LC/TSP-MS) in the Fenton system (with methanol or ethanol). One radical adduct was observed in the reaction of DMPO with the hydroxyl radical or the methanol-derived radical, while two adducts were detected in the reaction of DMPO with ethanol-derived radicals. The LC/TSP-MS spectra showed quasi-molecular ions [M + H]+ at m/z 146 and m/z 160 for the methanol-derived and ethanol-derived radical adducts, respectively, and an apparent molecular ion M+ at m/z 130 for the hydroxyl radical adduct. Use of methyl-D3 alcohol (CD3OH) and ethyl-D5 alcohol (CD3CD2OH) indicated that carbon-centered radicals are formed. Experiments with partially deuterated ethanol (CD3CH2OH and CH3CD2OH) indicated that the two adducts observed in the reaction of DMPO with ethanol-derived radicals correspond to the two diastereomeric adducts of DMPO with the alpha-hydroxyethyl free radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号