首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphinated polymer‐incarcerated (PI) Pd catalysts were prepared by immobilization of palladium with phosphinated polymers by using the PI method. The phosphinated PI Pd catalysts showed good catalytic activity without externally added phosphine ligands in the amination of aryl halides for C N bond‐forming reactions, as well as in Suzuki–Miyaura and Sonogashira coupling. No leaching of palladium from the immobilized Pd was observed by fluorescence X‐ray analysis. Furthermore, it was found that immobilization of Pd by the PI process facilitated the suppression of poisoning of the metal by amines. These effects can be ascribed to stabilization of the catalyst by both the phosphine moieties and the benzene rings in the swollen polymer support. The phosphinated PI Pd catalysts could also be recovered by simple filtration and reused several times without leaching of palladium in both the amination and Suzuki–Miyaura coupling reactions.  相似文献   

2.
于涛  李莹  姚成福  吴海虹  刘月明  吴鹏 《催化学报》2011,32(11):1712-1718
新型有机介孔材料FDU-15负载卡宾配体络合醋酸钯催化剂FDU-NHC/Pd(Ⅱ)的制备方法简单,通过三步反应即可制得,采用X射线衍射、N2吸附-脱附和透射电镜等手段对催化剂进行了表征,并考察了它在Sonogashira偶联反应中的催化性能.结果表明,功能化不影响FDU-15的有序介孔结构,仅其孔径、孔体积和BET比表...  相似文献   

3.
The Forum Article critically summarizes investigations and discussions on the nature and role of potential active species in C-C coupling reactions of the Heck type using catalyst systems with "ligand-free" inorganic salts, simple inorganic complexes, and supported and nonsupported (colloidal) Pd particles. From a series of experiments and reports, it can be concluded that the "active species" is generated in situ in catalytic systems at higher temperature conditions (>100 degrees C). In all heterogeneous systems with solid Pd catalysts, Pd is dissolved from the solid catalyst surface under reaction conditions by a chemical reaction (complex formation and/or oxidative addition of the aryl halide), forming extremely active coordinatively unsaturated Pd species. Pd is partially or completely redeposited onto the support at the end of the reaction when the aryl halide is used up. The Pd dissolution-redeposition processes correlate with the reaction rate and are strongly influenced by the reaction conditions. Skilled preparation of the catalyst and careful adjustment of the reaction conditions allowed the development of highly active heterogeneous catalysts (Pd/C, Pd/metal oxide, and Pd/zeolite), converting aryl bromides and aryl chlorides in high yields and short reaction times. Reaction conditions have been developed allowing the conversion of bromobenzene with turnover numbers (TONs) of 10(7) and even of unreactive aryl chlorides (chlorobenzene and chlorotoluene) in high yields with simple "ligand-free" Pd catalyst systems like PdCl2 or Pd(OH)2 in the absence of any organic ligand. Simple coordinatively unsaturated anionic palladium halide (in particular, bromo) complexes [PdXn](m-) play a crucial role as precursor and active species in all ligand-free and heterogeneous catalyst systems and possibly in Heck reactions at all.  相似文献   

4.
[reaction: see text] Immobilization of a palladium catalyst with use of new phosphinated polymers was carried out utilizing the polymer incarcerated (PI) method. This phosphinated PI Pd catalyst showed excellent activity in Suzuki-Miyaura couplings without addition of external phosphine ligands. No leaching of Pd was observed in this reaction, and the catalyst was recovered quantitatively by simple filtration and reused several times without loss of activity.  相似文献   

5.
Palladium colloids revealing narrow particle size distributions can be obtained by chemical reduction using tetra–alkylammonium hydrotriorganoborates. Combining the stabilizing agent [NR] with the reducing agent [BEt3H?] provides a high concentration of the protecting group at the reduction centre. Alternatively, NR4X (X = halogen) may be coupled to the metal salt prior to the reduction step: addition of N(octyl)4Br to Pd(ac)2 in THF, for example, evokes an active interaction between the stabilizing agent and the metal salt. Reduction of NR-stabilized palladium salts with simple reducing agents such as hydrogen at room temperature yields stable palladium organosols which may be isolated in the form of redispersible powders. The anion of the palladium salt is crucial for the success of the colloid synthesis. Electron microscopy shows that the mean particle size ranges between 1.8 and 4.0 nm. An X–ray–photoelectron spectrscopic examination demonstrated the presence of zerovalent palladium. These palladium colloids may serve as both homogeneous and heterogeneous hydrogenation catalysts. Adsorption of the colloids onto industrially important supports can be achieved without agglomeration of palladium particles. The standard activity of a charcoal catalyst containing 5% of colloidal palladium determined through the cinnamic acid standard test was found to exceed considerably the activity of the conventional technical catalysts. In addition, the lifespan of the catalyst containing a palladium colloid, isolated from the reduction of [N(octyl)4]2PdCl2Br2 with hydrogen, is superior to conventionally prepared palladium/charcoal (Pd/C) catalysts. For example, the activity of a conventional Pd/C catalyst is completely suppressed after 38×103 catalytic cycles per Pd atom, whereas the colloidal Pd/C catalyst shows activity even after 96times;103 catalytic cycles.  相似文献   

6.
使用多元醇还原法制备了均匀分散的钯纳米颗粒.将钯纳米颗粒负载于板式、鱼骨式和管式纳米碳纤维,得到稳定、可重复使用的非均相催化剂.实验结果表明,钯纳米胶粒同载体之间的电位差对钯在载体上的负载量、粒子大小以及Heck反应中钯的溶失量有很大的影响.在制备过程中,增加钯纳米胶粒同纳米碳纤维表面的电位差能够大大降低钯在Heck反应中的流失.催化剂的反应活性随钯粒子的增大而降低.  相似文献   

7.
To overcome the separation difficulty of the palladium-based homogeneous catalyst, the palladium complex can be anchored on various supports such as silica, polymers and nanoparticles. For the same purpose, we describe a general and facile method to immobilize palladium bis(phosphine) complexes on the basis of the technique widely used for metal-organic framework (MOF) synthesis, yielding a mesoporous coordination polymer palladium-CP1. Although palladium complexes are generally not stable enough to allow further manipulation, we succeeded in preparation of a palladium coordination polymer without by-product Pd clusters or nanoparticles. The fresh palladium-CP1 catalyst exhibits a yield close to 55% for tolane at room temperature and 24 h in Sonogashira coupling of iodobenzene and phenylacetylene, as compared with a yield of 89% for its homogeneous counterpart [Pd(PPh(3))(2)Cl(2)]. Furthermore, this catalyst is stable enough to be reused more than four times with no Pd and Zn leaching. Therefore this new immobilization method offers great promise for the produce of recyclable palladium heterogeneous catalysts with higher activity and higher thermal and chemical stability in the future.  相似文献   

8.
Heterogeneous palladium catalysts anchored on functionalized silica were prepared by sol–gel methods and their catalytic properties for the oxidative carbonylation of phenol to diphenyl carbonate (DPC) were investigated. The catalysts were characterized by means of IR, XPS, EA and BET. The Pd loading in the heterogeneous catalysts and leaching in solution were detected by atomic absorption. The effects of different reaction parameters such as temperature, solvent and inorganic cocatalyst on the yield of DPC and Pd leaching were also studied. It was found that Cu2O and tetrahydrofuran (THF) were the best partners with these heterogeneous catalysts. In the presence of 3 Å molecular sieves as dehydrating agent, the heterogeneous palladium catalyst prepared from 2‐acylpyridine revealed excellent catalytic performance and stability at 110 °C for 5 h, giving 13.7% yield of DPC based on phenol and 4.0% Pd loss in solution. The heterogeneous catalyst was more active and stable compared with traditional supported Pd? C catalyst under the same reaction conditions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
[reaction: see text] Suzuki-Miyaura coupling using a highly efficient and reusable polymer-incarcerated palladium (PI Pd) is described. Various coupling reactions proceeded smoothly using PI Pd with phosphine ligands, and the catalyst could be recovered by simple filtration and reused several times without loss of activity.  相似文献   

10.
An efficient heterogeneous palladium catalyst system has been developed based on immobilization of Pd nanoparticles on silica-bonded N-propylpiperazine sodium N-propionate (SBPPSP) substrate. SBPPSP substrate can stabilize the Pd nanoparticles effectively so that it can improve their stability against aggregation. In addition, grafted piperazine species on to the silica backbone prevent the removing of Pd nanoparticles from the substrate surface. Transmission electron microscopy (TEM) of catalyst is shown the size of Pd nanoparticles, also it confirmed by particle size analyzer which shown the average size of 21 nm for Pd. The catalytic activity of these catalysts was investigated in the Sonogashira reaction. The catalyst could be recycled several times without appreciable loss in catalytic activity.  相似文献   

11.
Two carbon nanotube supported palladium catalysts were prepared using a chemical reduction technique (Pd/CR‐CNT) and a conventional impregnation method (Pd/CNT) respectively, and their catalytic performances for Heck reaction were investigated. The catalysts were characterized by TEM and XPS techniques and the products were characterized by 1H NMR. Research results showed that the (Pd/CR‐CNT) catalyst showed a better catalytic activity than the (Pd/CNT) catalyst, owing to better dispersion of palladium nanoparticles and stronger interaction between the active palladium species and carbon nanotube. Meanwhile, the product yield maintained 99.93% of its initial value at five‐times re‐use, compared with that at the first time use. The catalyst prepared with the chemical reduction method represented a better reusing performance.  相似文献   

12.
Layered double hydroxide and Merrifield resin supported nanopalladium(0) catalysts are prepared by an exchange of PdCl(4)(2-) followed by reduction and well characterized for the first time. The ligand-free heterogeneous layered double hydroxide supported nanopalladium (LDH-Pd(0)) catalyst using the basic LDH in place of basic ligands indeed exhibits higher activity and selectivity in the Heck olefination of electron-poor and electron-rich chloroarenes in nonaqueous ionic liquids (NAIL) over the homogeneous PdCl(2) system. Using microwave irradiation, the rate of the Heck olefination reaction is accelerated, manifold with the highest turnover frequency ever recorded in the case of both electron-poor and electron-rich chloroarenes. The basic LDH-Pd(0) shows a superior activity over a range of supported catalysts, from acidic to weakly basic Pd/C, Pd/SiO(2,) Pd/Al(2)O(3), and resin-PdCl(4)(2-) in the Heck olefination of deactivated electron-rich 4-chloroanisole. The use of LDH-Pd(0) is extended to the Suzuki-, Sonogashira-, and Stille-type coupling reactions of chloroarenes in an effort to understand the scope and utility of the reaction. The catalyst is quantitatively recovered from the reaction by a simple filtration and reused for a number of cycles with almost consistent activity in all the coupling reactions. The heterogeneity studies provide an insight into mechanistic aspects of the Heck olefination reaction and evidence that the reaction proceeds on the surface of the nanopalladium particles of the heterogeneous catalyst. TEM images of the fresh and used catalyst indeed show that the nanostructured palladium supported on LDH remains unchanged at the end of the reaction, while the XPS and evolved gas detection by TGA-MS of the used catalyst identify ArPdX species on the heterogeneous surface. Thus, the ligand-free nanopalladium supported on LDH, synthesized by the simple protocol, displays superior activity over the other heterogeneous catalysts inclusive of nanopalladium in the C-C coupling reactions of chloroarenes.  相似文献   

13.
The activity and thermal stability of Pd/Al2O3 and Pd/(Al2O3+MOx) (M=Ca, La, Ce) palladium catalysts in the reaction of complete oxidation of methane are presented in this study. The catalyst supports were prepared by sol-gel method and they were dried either conventionally or with supercritical carbon dioxide. Then they were impregnated with palladium nitrate solution. The catalysts with unmodified alumina had a high surface area. The activity and thermal stability of the aluminasupported catalyst was also very high. The introduction of calcium, lanthanum, or cerium oxide into alumina support caused a decrease of the surface area in the way dependent on the support precursor drying method. These modifiers decreased the activity of palladium catalysts, and they required higher temperatures for the complete oxidation of methane than unmodified Pd/Al2O3. The improvement of the palladium activity by lanthanum and cerium support modifier was observed only at low temperatures of the reaction.  相似文献   

14.
The activity and thermal stability of Pd/Al_2O_3 and Pd/(Al_2O_3 MO_x)(M=Ca,La,Ce) palladium catalysts in the reaction of complete oxidation of methane are presented in this study.The catalyst supports were prepared by sol-gel method and they were dried either conventionally or with supercritical carbon dioxide.Then they were impregnated with palladium nitrate solution.The catalysts with unmodified alumina had a high surface area.The activity and thermal stability of the alumina- supported catalyst was also very high.The introduction of calcium,lanthanum,or cerium oxide into alumina support caused a decrease of the surface area in the way dependent on the support precursor drying method.These modifiers decreased the activity of palladium catalysts,and they required higher temperatures for the complete oxidation of methane than unmodified Pd/Al_2O_3.The improvement of the palladium activity by lanthanum and cerium support modifier was observed only at low temperatures of the reaction.  相似文献   

15.
杨斌  徐筠 《分子催化》1996,10(5):339-344
制备了聚N-乙烯基-2-吡咯烷酮PVP负载钯催化剂Pd/PVP及各种双金属催化剂(1-m)Pd-mM/PVP,并用于硝基芳烃的加氢还原中,其中Pd/PVP中加入H2PtCl6的效果最佳,碱的用量、溶剂和Pd、Pt的比例都对催化剂的活性有明显的影响,双金属催化剂0.80Pd-0.20Pt/PVP在温和条件下能高活性,高选择性地催化硝基芳烃还原,得到相应的芳胺。  相似文献   

16.
Song-Se Yi 《Tetrahedron letters》2007,48(38):6771-6775
A chitosan-supported palladium (Pd) (0) catalyst was prepared by simple adsorption of palladium(II) ion onto chitosan beads and a subsequent reduction process. To maintain mechanical stability, the chitosan-supported palladium(0) catalyst was cross-linked with either glutaraldehyde or diglycidyl ether polyethylene glycol. The catalysts were utilized for the Suzuki cross-coupling reaction in water. The catalyst, in the presence of a tetrabutylammonium bromide (TBAB) additive, showed excellent catalytic activity in microwave-prompted Suzuki cross-coupling reactions using various aryl halides and boronic acids. In addition, the catalyst was successfully reused up to five times without significant loss of catalytic activity.  相似文献   

17.
A simple synthetic strategy of polyamide was described from melamine and terephalic acid via one‐step polycondensation. PdCl2 was then immobilized on the polyamide (denoted as Pd/MPA). Melamine and terephalic acid not only acted as monomers but also provided the ligand sites to help the polyamide to coordinate with Pd(II). The Pd/MPA catalyst was characterized by FT‐IR, TGA, SEM, TEM, XPS, N2 adsorption‐desorption and atomic absorption spectroscopy. The catalyst was used in Suzuki‐Miyaura coupling reaction of various aryl halides, including less reactive chlorobenzene and benzyl chloride, to give the coupling products in moderate to excellent yields. High turnover frequencies (TOF) up to 29400 h‐1 can be also obtained. In addition, it behaved truly as a heterogeneous catalyst with high reusability after being recycled 6 times and palladium leaching was negligible during the process. This work provides a practical polyamide support to develop heterogeneous palladium catalysts with simple synthetic procedure and low cost.  相似文献   

18.
A novel egg-shell Pd-S catalyst with palladium metal as the core and a membrane of palladium sulfide as the surface has been prepared by sulphidizing Pd/C with H2S.This catalyst is effective for the reductive alkylation of p-amino diphenylamine(PADPA) and methylisobutyl ketone(MIBK) to afford N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenedianine(DBPPD) with conversion up to 99.42%and selectivity to 97.46%.Comparing with the other common palladium sulfide catalysts,the membrane of palladium sulfide on the surface and the core of palladium metal cause the Pd on the surface of the new catalyst in a lower sulfur coordination, which improves its activity.Our result indicates that this new egg-shell Pd-S/C is an efficient hydrogenation catalyst.  相似文献   

19.
[reaction: see text]. Polymer-incarcerated (PI) palladium catalyst was practically prepared from inexpensive Pd(II) salts and a polystyrene-based copolymer under reducing conditions. Remarkable effects of alkali metal salts on the palladium loading were observed. PI Pd thus prepared showed high catalytic activity in Mizoroki-Heck reactions and Suzuki-Miyaura couplings with a range of substrates including an aryl chloride. In all cases, the Pd catalyst was recovered quantitatively without leaching, and reused several times without significant loss of activity.  相似文献   

20.
The efficiency of various heterogeneous solids consisting of palladium supported on hydrotalcite as catalysts in the Suzuki cross-coupling reaction between bromobenzene and phenylboronic acid was studied. Based on the catalytic activity results, the reaction develops to an acceptable extent with 100% selectivity at moderate temperatures in the presence of some of the catalysts. The best results were provided by a catalyst consisting of an acetate-pyridine complex of Pd supported on hydrotalcite that gave high conversion values even after three reuses. The reactions conditions were very mild (a temperature of 55 degrees C and atmospheric pressure). In fact, the catalyst provided conversion and selectivity results surpassing those of existing heterogeneous phase catalysts and most homogeneous phase catalysts for the same purpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号