首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, self-sustained, biocompatible, biodegradable films containing gold nanostructures have been fabricated for potential application in nanobioscience and ultrasensitive chemical and biochemical analysis. We report a novel synthesis of gold nanoparticles mediated by the biopolymer chitosan. Self-supporting thin films are formed from the resultant gold-chitosan nanocomposite solutions and characterized by UV-visible surface plasmon absorption, transmission electron microscopy, atomic force microscopy, infrared absorption, and Raman scattering measurements. Results demonstrate control over the size and distribution of the nanoparticles produced, which is promising for several applications, including the development of biosensors. As a proof of principle, we demonstrate that gold-chitosan films can be employed in trace analysis using surface-enhanced Raman scattering.  相似文献   

2.
Various metal-chitosan nanocomposites were synthesized, including silver (Ag), gold (Au), platinum (Pt), and palladium (Pd) in aqueous solutions. Metal nanoparticles were formed by reduction of corresponding metal salts with NaBH4 in the presence of chitosan. And chitosan molecules adsorbing onto the surface of as-prepared metal nanoparticles formed the corresponding metal-chitosan nanocomposites. Transmission electron microscopy (TEM) images and UV-vis spectra of the nanocomposites revealed the presence of metal nanoparticles. Comparison of all the resulting particles size, it shows that silver nanoparticles are much larger than others (Au, Pt and Pd). In addition, the difference in particles size leads to develop different morphologies in the films cast from prepared metal-chitosan nanocomposites. Polarized optical microscopy (POM) images show a batonet-like structure for Ag-chitosan nanocomposites film, while for the films cast from other metal (Au, Pt, and Pd)-chitosan nanocomposites, some branched-like structures with a few differences among them were observed under POM observation.  相似文献   

3.
The solvent effect on the structure of nanocomposite films cast from chitosan solutions with AgNO3 as a precursor of silver nanoparticles was studied for the first time. The size and concentration of silver nanoparticles in the chitosan matrix can be controlled by varying the chitosan-dissolving ability of the solvent with carbonic acid.  相似文献   

4.
The in situ formation of gold nanoparticles into the natural polymer chitosan is described upon pulsed laser irradiation. In particular, hydrogel-type films of chitosan get loaded with the gold precursor, chloroauric acid salt (HAuCl(4)), by immersion in its aqueous solution. After the irradiation of this system with increasing number of ultraviolet laser pulses, we observe the formation of gold nanoparticles with increasing density and decreasing size. Analytical studies using absorption measurements, atomic force microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy of the nanocomposite samples throughout the irradiation procedure reveal that under the specific irradiation conditions there are two competing mechanisms responsible for the nanoparticles production: the photoreduction of the precursor responsible for the rising growth of gold particles with increasing size and the subsequent photofragmentation of these particles into smaller ones. The described method allows the localized formation of gold nanoparticles into specific areas of the polymeric films, expanding its potential applications due to its patterning capability. The size and density control of the gold nanoparticles, obtained by the accurate increase of the laser irradiation time, is accompanied by the simultaneously controlled increase of the wettability of the obtained gold nanocomposite surfaces. The capability of tailoring the hydrophilicity of nanocomposite materials based on natural polymer and biocompatible gold nanoparticles provides new potentialities in microfluidics or lab on chip devices for blood analysis or drugs transport, as well as in scaffold development for preferential cells growth.  相似文献   

5.
The effect of pressure in solutions of chitosan in carbonic acid with the AgNO3 precursor on the structure of cast nanocomposite films with silver nanoparticles has been studied for the first time. The size of silver nanoparticles can be controlled by varying pressure in carbonic acid.  相似文献   

6.
An eco-friendly chemical reduction method was successfully used for the preparation of chitosan (CTS) composite films loaded with silver nanoparticles (AgNPs) by self assembly method using poly(ethylene glycol) as both reducing and stabilizing agent. UV-Vis spectra of the prepared chitosan loaded silver nanoparticles (CTSLAg) films reveal that full reduction of silver ions to silver nanoparticles takes place at 90 °C. The effect of reaction conditions on the silver nanoparticles formation was investigated using UV-Vis spectrophotometer. The morphology of the films was tested by scanning electron microscopy (SEM). The DSC curves showed that the CTSLAg film had a favorable compatibility and heat stability. AgNPs were confirmed by XRD and UV-Vis spectroscopy. The TEM findings revealed that the silver nanoparticles synthesized were spherical in shape with uniform dispersal, and by increasing CTS:PEG ratio larger silver nanoparticles could be obtained. The results of antibacterial study reveal that the prepared nanocomposite films exhibited potential inhibition.  相似文献   

7.
In this study, acrylic polymer–nanogold nanocomposites and their cast films were prepared from an acrylic copolymer and 3-mercaptopropyltrimethoxysilane (MPS) stabilized gold nanoparticles by a sol–gel reaction. The acrylic copolymer was synthesized from methyl methacrylate (MMA) and 3-(trimethoxysilyl)propyl methacrylate (MSMA). The Si–OMe groups of MPS on the surface of gold nanoparticles (MPS–Au) provided the further reaction with the same groups of MSMA, hence the covalent bonds between polymers and MPS–Au nanoparticles were formed. FE-SEM images show MPS–Au nanoparticles are dispersed well in the prepared nanocomposites, and no large aggregation is occurred. TGA results indicate that the decomposed temperatures (Td) of low Au-content (0.1 wt.%) nanocomposites are higher than these of the acrylic copolymer and high Au-content (1.0 wt.%) nanocomposites. The temperature of maximum decomposed rate (Tp) of each prepared nanocomposite is higher than that of the acrylic copolymer. The hardness of the cast film increases with increasing the Au content. The results show the improved thermal stability and application potentials of the prepared acrylic polymer–nanogold nanocomposites.  相似文献   

8.
陈霞  翟翠萍 《化学研究》2014,(1):20-23,32
以氯金酸为前驱体,十二烷基硫醇和硼氢化钠分别作为稳定剂和还原剂,采用相转移法制备了单分散的金纳米粒子.将金纳米粒子通过乳液聚合的方法制备了纳米金/聚苯乙烯复合粒子.通过紫外-可见吸收光谱(UV-Vis)研究了纳米金和纳米金/聚苯乙烯复合粒子的光吸收特性,使用傅立叶变换红外光谱(FT-IR)、X射线衍射(XRD)、透射电子显微镜(TEM)和动态光散射(DLS)对产物的组成、晶体结构、形貌、以及粒径进行了表征.结果表明,复合粒子为粒径分布较窄的球形,其中的金纳米粒子为面心立方结构.热失重分析(TGA)说明制备的纳米金/聚苯乙烯复合粒子具有很好的热稳定性.  相似文献   

9.
Chitosan‐carboxymethyl cellulose (CMC) full polysaccharide membrane was prepared by cross‐linking of chitosan with CMC dialdehyde and subsequent reductive amination. CMC dialdehyde molecule was prepared by periodate oxidation of CMC and then applied as a cross‐linking agent to form a new membrane network. The properties of oxidized CMC were investigated by various methods such as Fourier transform infrared (FT‐IR) spectroscopy, 1H NMR spectroscopy, and viscosity test. Then, novel chitosan‐CMC silver nanocomposite was prepared using chitosan‐CMC as a carrier. The structure of the chitosan‐CMC membrane and the silver nanocomposite were confirmed by FT‐IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). TEM images indicate that the chitosan‐CMC nanocomposite comprises silver nanoparticles with diameters in the range of about 5–20 nm. The antibacterial studies of the nanocomposite were also evaluated. The chitosan‐CMC silver nanocomposite demonstrates good antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, the detailed characterisation of silver (Ag) nanoparticles/polymer nanocomposite chemical structure and morphology of grating has been carried out. Scanning electron microscopy measurements show spherical shape of Ag nanoparticles (40–80 nm in diameter) prepared in chloroform by reduction of silver nitrate. In the positive photoresist based on 2-diazo-2H-naphthalen-1-one (DNQ)–novolac, Ag nanoparticles were deposited from organic colloidal solution. The content of nanoparticles in the polymer matrix was varied by increasing the concentration of Ag colloidal solution. Grating was formed by contact lithography. The quantification of Ag nanoparticles and chemical analysis of Ag/DNQ-novolac-based nanocomposite was performed by means of energy dispersive X-ray analyzer and SEM/EDS. In order to study the effect of Ag nanoparticles on the DNQ-novolac-based nanocomposite structure, investigations with Fourier transform infrared spectroscopy were conducted. Ag nanoparticles cause changes associated with substituent-sensitive out-of-plane C–H bending vibrations of aromatic ring. Ag/DNQ-novolac-based nanocomposite film surface morphology and grating topography imaging were performed using atomic force microscopy. Added Ag nanoparticles change the geometrical parameters of the gratings. The split of corrugations was achieved in Ag/DNQ-novolac-patterned films. Their morphology can be tailored by altering the content of Ag nanoparticles.  相似文献   

11.
Hybrid aerosol assisted and atmospheric pressure chemical vapour deposition methodology has been utilised to produce nanocomposite thin films of gold nanoparticles and vanadium dioxide from vanadyl acetylacetonate and auric acid. The addition of tetraoctyl ammonium bromide (TOAB) to the precursor solution gave control of the size and distribution of gold nanoparticles in the vanadium oxide matrix. These reactions led to vanadium dioxide films with reduced crystallite sizes and enhanced thermochromic properties. The films were analysed by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Their optical and thermochromic behaviour was also determined. This hybrid method shows great potential for the production of nanocomposite thin films with good physical properties.  相似文献   

12.
The monodisperse silver nanoparticles were synthesized by one-step reduction of silver ions in the alkaline subphase beneath vitamin E (VE) Langmuir monolayers. The monolayers and silver nanocomposite LB films were characterized by surface pressure-area (pi-A) isotherms, transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-vis), selected area electron diffraction (SAED), Fourier transform infrared transmission spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS), respectively. The results showed that the limiting area/VE molecule on different subphases varied. The phenolic groups in the VE molecules were converted to a quinone structure, and the silver ions were mainly reduced to ellipsoidal and spherical nanoparticles. The arrangement of the nanoparticles changed from sparseness to compactness with reaction time. The electron diffraction pattern indicated that the silver nanoparticles were face-centered cubic (fcc) polycrystalline. Silver nanocomposite LB films with excellent quality could be formed on different substrates, indicating that the transfer ratio of monolayer containing silver nanoparticles is close to unity. The dynamic process of reduction of silver ions by VE LB films was also studied through monitoring the conductivity of an Ag2SO4 alkaline solution.  相似文献   

13.
采用硼氢化钠化学还原氯金酸的碱性溶液制备了纳米金溶胶, 利用紫外-可见吸收光谱研究了金与壳聚糖的相互作用. 结果表明, 壳聚糖能够捕获金纳米粒子并易于形成金@壳聚糖复合材料. 利用X-光粉末衍射(XRD)、紫外-可见漫反射光谱(UV-vis DRS)、透射电镜(TEM)、红外光谱(IR)、微分热重及差热分析(DTG-DTA)等对这种复合材料进行了表征, 发现该材料具有较小的金纳米粒子, 壳聚糖的存在改变了金纳米粒子的等离子共振吸收, 二者之间存在一定的键合作用. 以分子氧为氧化剂, 在温和条件下, 该材料对葡萄糖选择氧化制葡萄糖酸反应具有良好的催化性能.  相似文献   

14.
Polytetrafluoroethylene (PTFE)/polyacrylate core-shell nanoparticles were produced via the emulsifier-free seeded emulsion polymerization of acrylate monomers with PTFE latex as seed. The monomer conversions under different synthesis parameters were monitored by a gravimetric method. The polymerization conditions for preparing PTFE/polyacrylate core-shell nanoparticles were surveyed and optimized. The chemical component of the PTFE/polyacrylate particles was confirmed by comparing the Fourier-transform infrared spectra of PTFE and PTFE/polyacrylate particles. The core-shell structure of the resulting PTFE/polyacrylate nanocomposite particles was investigated by transmission electron microscopy. The water contact angles of the films prepared from PTFE/polyacrylate nanocomposite particles showed that the films were hydrophilic, which confirmed that polyacrylate covered the surface of the PTFE particles. This kind of PTFE/polyacrylate core-shell nanoparticles might advance the compatibility of PTFE with other materials due to the covering of the polyacrylate shell on the surface of PTFE, which would make them promising in various fields.  相似文献   

15.
We report on the construction of a label-free electrochemical immunosensor for detecting the core antigen of the hepatitis C virus (HCV core antigen). A glassy carbon electrode (GCE) was modified with a nanocomposite made from gold nanoparticles, zirconia nanoparticles and chitosan, and prepared by in situ reduction. The zirconia nanoparticles were first dispersed in chitosan solution, and then AuNPs were prepared in situ on the ZrO2-chitosan composite. In parallel, a nanocomposite was synthesized from AuNPs, silica nanoparticles and chitosan, and conjugated to a secondary antibody. The properties of the resulting nanocomposites were investigated by UV-visible photometry and transmission electron microscopy, and the stepwise assembly process was characterized by means of cyclic voltammetry and electrochemical impedance spectroscopy. An sandwich type of immunosensor was developed which displays high sensitivity to the HCV core antigen in the concentration range between 2 and 512?ng?mL?1, with a detection limit of 0.17?ng?mL?1 (at S/N?=?3). This immunosensor provides an alternative approach towards the diagnosis of HCV.
Fig
A sandwich-type immunosensor was constructed for the detection of HCV core Ag. AuNPs/ZrO2-Chits nanocomposites were prepared by in situ reduction method. AuNPs/SiO2-Chits nanocomposite integrated with secondary antibody (Ab2) without labeled HRP. The immunosensor displayed high sensitivity to HCV core antigen with a detection limit of 0.17?ng?mL?1 (S/N?=?3).  相似文献   

16.
This paper reports on a facile method for synthesizing gold nanoparticles (AuNps) with diameter around 5 nm encapsulated with water‐soluble polythiophene sulfonate poly[2‐(3‐thienyl)ethyloxy‐4‐butylsulfonate] sodium salt (PTS) and their physical–chemical characterization. The synthesis of hybrid materials of polythiophene derivatives and gold nanoparticles is a way to improve the polymer properties, mainly in application for chemical and optical sensing platforms. The AuNps were prepared by reducing gold salt with acid aqueous sodium citrate by the Turkvich method in the presence of PTS, and both PTS and citrate helped to stabilize the AuNps. The suspensions of AuNp:PTS presented good chemical and photostability for long period of storage. The nanoparticles encapsulated with the polymer presented smaller diameters than those obtained using only sodium citrate, according to scanning electron microscopy images. The AuNps obtained were used for fabrication LbL films with commercial chitosan, which were characterized by impedance spectroscopy measurements. The results showed that the charge transfer resistance values (Rct) decrease as the average diameter of the AuNps decreases and the proportion of PTS increases in the nanocomposite. Such increase of the nanocomposite conductivity, given by the low values of Rct, indicates that the novel film architecture developed is promising for chemical sensing applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1245–1254  相似文献   

17.
A novel three-dimensional porous chitosan membrane material was prepared as a matrix to encapsulate hepatitis B surface antibody (HBsAb) for fabrication of immunosensors. The porous chitosan matrix was prepared by electrodepositing a designer nanocomposite solution of chitosan-encapsulated silica nanoparticle hybrid film on an ITO electrode, and then removing the silica nanoparticles with HF solution. Using HBsAb as a model, the potentiometric immunosensor was constructed by linking HBsAb molecules to the three-dimensional porous chitosan film using glutaraldehyde as a cross-linker. Scanning electron microscopy was used to investigate the surface morphology of the three-dimensional porous chitosan films. Cyclic voltammograms and electrochemical impedance spectroscopy were used to probe the interfacial properties of the immunosensor. Results showed that the fabricated immunosensor with three-dimensional porous structure possessed high surface area, good mechanical stability, and good hydrophilicity, which provided a biocompatible microenvironment for maintaining the bioactivity of the immobilized protein and increased the protein loading. Therefore, the present immunosensor exhibits a wide linear range from 6.85 to 708 ng mL(-1) with a low detection limit of 3.89 ng mL(-1) for the detection of hepatitis B surface antigen (HBsAg). This work implied that the biocompatible and controllable three-dimensional porous chitosan membrane possessed potential applications for biosensing.  相似文献   

18.
This article reports the effects of heating temperature and composition of nanoparticle multilayer films on the morphology, stability, and optical property of gold nanoisland films prepared by nanoparticle self-assembly/heating method. First, nanoparticle-polymer multilayer films are prepared by the layer-by-layer assembly. Nanoparticle multilayer films are then heated at temperature ranging from 500 °C to 625 °C in air to induce an evaporation of organic matters from the films. During the heating process, the nanoparticles on the solid surface undergo coalescence, resulting in the formation of nanostructured gold island arrays. Characterization of nanoisland films using atomic force microscopy and UV-vis spectroscopy suggests that the morphology and stability of gold island films change when different heating temperatures are applied. Stable gold nanoisland thin film arrays can only be obtained after heat treatments at or above 575 °C. In addition, the results show that the use of nanoparticles with different sizes produces nanoisland films with different morphologies. Multilayer films containing smaller gold nanoparticles tend to produce more monodisperse and smaller island nanostructures. Other variables such as capping ligands around nanoparticles and molecular weight of polymer linkers are found to have only minimal effects on the structure of island films. The adsorption of streptavidin on the biotin-functionalized nanoisland films is studied for examining the biosensing capability of nanoisland arrays.  相似文献   

19.
Polyelectrolyte shells of nanocomposite microcapsules containing colloidal gold nanoparticles of different diameters (5, 10, or 20 nm) are formed by the polyion assembly procedure. Microcapsules with different numbers of layers and structures are studied by transmission electron microscopy, atomic force microscopy, and confocal microscopy. The values of the thickness and roughness of microcapsule shells are determined and the dependence of these parameters on the size of gold nanoparticles constituting shells is investigated. It is established that the concentration of nanoparticles in polyelectrolyte shells of microcapsules decreases with an increase in particle diameter.  相似文献   

20.
In this work, we have employed a suite of complementary analytical techniques to shed light on the nanocomposite structures formed during gold nanoparticles (AuNPs) synthesis in the presence of poly(amidoamine) (PAMAM) dendrimers. Nanocomposites of AuNPs and either fourth or eighth generation amine-terminated PAMAM dendrimers (G4 or G8) were prepared. The size distributions of AuNPs and the nanocomposites were determined by transmission electron microscopy. Atomic force microscopy phase imaging and neutral impact collision ion scattering spectroscopy (NICISS) were utilized for the first time to investigate and compare nanocomposite structures formed from G4 and G8. Our results suggest that G4 stabilized the AuNP by capping the AuNP particle surface but that a certain fraction of the gold surface was still barely covered. In contrast, the metal nanoparticle surface was completely covered by G8. In addition, NICISS results provided evidence that nanocomposites deformed when being deposited directly onto a substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号