首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrophobic zeolite beta containing low concentrations of Zr or Al was found to be a good catalyst for the racemization of 1-phenylethanol. The formation of styrene as a side product could be minimized by reducing the metal concentration in the zeolite beta. Combined with an immobilized lipase from Candida antarctica, the dynamic kinetic resolution of 1-phenylethanol to the (R)-phenylethylester can be achieved with high yield and selectivity. The reaction was best conducted in toluene as solvent at 60 degrees C, with higher temperatures leading to a loss in the enantioselectivity of the formed ester. By using high-molecular-weight acyl-transfer reagents, such as vinyl butyrate or vinyl octanoate, a high enantiomeric excess of the product esters of 92 and 98 %, respectively, could be achieved. This is attributed to a steric effect: the bulky ester is less able to enter the pore space of the zeolite catalyst where the active sites for racemization are localized. Close to 100 % conversion of the alcohol was achieved within 2 h. If the more common acyl donor, isopropenyl acetate, was used, the enantiomeric excess (ee) of the formed ester was only 67 %, and the reaction was considerably slower.  相似文献   

2.
We herein report a catalyst system for the dynamic kinetic resolution of secondary alcohols by combining the enzymatic resolution with an iron-catalyzed racemization. A new air-stable tricarbonyl (cyclopentadienone)iron complex is identified as the active racemization catalyst for this transformation without any additive. Various substrates including benzylic, heteroaromatic, aliphatic alcohols can be used and afford the corresponding esters in good yields and with excellent enantioselectivities.  相似文献   

3.
Highly dispersed palladium nanoparticles (1–2 nm) supported in large‐pore mesocellular foam (MCF; 29 nm) were synthesized. The Pd‐nanocatalyst/MCF system was characterized by transmission electron microscopy (TEM), powder X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). The performance of the Pd nanocatalyst obtained was examined for amine racemization. The Pd nanocatalyst showed higher activity and selectivity toward racemization of (S)‐1‐phenylethyl amine than any other amine racemization catalyst reported so far and it could be reused several times. Our data from TEM and XRD suggest a restructuring of the Pd nanocatalyst from amorphous to crystalline and an increase in Pd nanocatalyst size during the racemization reaction. This led to an unexpected increase of activity after the first use. The Pd nanocatalyst obtained can be integrated with other resolving processes of racemic organic compounds to increase the yield of chiral organic products.  相似文献   

4.
5.
A novel and efficient racemization catalyst, Pd/layered double-hydroxide-dodecyl sulfate anion, was prepared and used in the dynamic kinetic resolution (DKR) of arylamines. The undesired enantiomer was completely racemized at 55 °C, allowing the catalyst to be compatible with biocatalysts. DKR proceeded smoothly and showed a broad substrate scope, with good conversion and high product enantiomeric excesses (eep). The system could be reused more than 30 times without loss of conversion and eep value.  相似文献   

6.
7.
We prepared a Pd nanocatalyst (average diameter of Pd nanoparticles = 1.73 nm) displaying a remarkable activity for the racemization and dynamic kinetic resolution (DKR) of 1-methylbenzylamine. It was eight times more active than the previous best. The DKR of 1-methylbenzylamine with the Pd nanocatalyst (2 mol %) in the presence of a thermostable lipase (Novozym 435) was complete in 6 h at 70 °C. The DKRs of other benzyl amines also proceeded to completion in 6 h under similar conditions except the amount of Pd nanocatalyst.  相似文献   

8.
9.
Today hydrogen peroxide is produced by an indirect process in which an alkyl anthraquinone is sequentially hydrogenated and oxidized. In this way hydrogen and oxygen are kept separate during the manufacturing process. A process where molecular oxygen is directly hydrogenated could be preferred if control of the sequential hydrogenation can be achieved, particularly if high rates can be attained under intrinsically safe, non-explosive conditions. Herein we describe recent progress in the direct synthesis of hydrogen peroxide using supported palladium and gold-palladium alloy catalysts and consider some of the problems that have to be overcome.  相似文献   

10.
The substitution of a carbonyl ligand with PPh(3) in cyclopentadienylruthenium dicarbonyl complexes produces a new class of recyclable alcohol racemization catalysts. The catalysts are active at room temperature under aerobic conditions in the presence of silver oxide. Furthermore, the catalysts are compatible with the use of a lipase and isopropenyl acetate for the dynamic kinetic resolution (DKR) of secondary alcohols under ambient conditions.  相似文献   

11.
A highly dispersed nanopalladium catalyst supported on mesocellular foam (MCF), was successfully used in the heterogeneous catalysis of aminocarbonylation reactions. During the preliminary evaluation of this catalyst it was discovered that the supported palladium nanoparticles exhibited a “release and catch” effect, meaning that a minor amount of the heterogeneous palladium became soluble and catalyzed the reaction, after which it re‐deposited onto the support.  相似文献   

12.
13.
Ruthenium acts as a good catalyst for the racemization reaction of secondary alcohols and amines. Ruthenium-catalyzed racemization is coupled with enzymatic kinetic resolution to prepare chiral compounds in 100% theoretical yield. Ten ruthenium complexes (110) act as a good catalyst the for racemization reaction and are also compatible with DKR process. Two other ruthenium complexes [RuCl2(PPh3)3] and [Cp*RuCl(COD)] are active for racemization reaction but their successful compatibility with DKR has not yet been reported. Ru/γ-Al2O3 and Ru–HAP are the heterogeneous catalysts used for the racemization reaction. They have also not been employed for DKR process. Polymer supported ruthenium is employed as a reusable racemization catalyst for aerobic DKR of alcohols.  相似文献   

14.
15.
16.
An easy to handle and stable racemization catalyst for secondary alcohols is obtained by an in situ mixture of readily available [Ru(cymene)Cl2]2 with chelating aliphatic diamines. Optimization of the reaction revealed that N,N,N′,N′-tetramethyl-1,3-propanediamine as ligand racemizes aromatic alcohols completely within 5 h. This easy to handle and stable catalytic system is combined with a lipase-catalyzed resolution to provide an efficient dynamic kinetic resolution of secondary alcohols.  相似文献   

17.
Cascade lipase-catalyzed lactonization has been applied to dynamic hemithioacetal formation, leading to efficient five- and six-membered lactone synthesis as well as chiral discrimination. Solvent-dependent regioselectivity was observed for the selective formation of 1,3-oxathiolan-5-one and γ-butyrolactone derivatives.  相似文献   

18.
A highly efficient dynamic kinetic resolution system for secondary aromatic alcohol using low-cost sulfonated sepiolite as a racemization catalyst has been developed. The system operates at 25 °C, achieves good eep (>99%) and substrate conversion ratio (>99%), is applicable to a variety of substrates and can be reused more than 10 times.  相似文献   

19.
We describe the highly selective palladium catalyzed kinetic resolutions of the racemic cyclic allylic carbonates rac-1 a-c and racemic acyclic allylic carbonates rac-3 aa and rac-3 ba through reaction with tert-butylsulfinate, tolylsulfinate, phenylsulfinate anions and 2-pyrimidinethiol by using N,N'-(1R,2R)-1,2-cyclohexanediylbis[2-(diphenylphosphino)-benzamide] (BPA) as ligand. Selectivities are expressed in yields and ee values of recovered substrate and product and in selectivity factors S. The reaction of the cyclohexenyl carbonate 1 a (>/=99 % ee) with 2-pyrimidinethiol in the presence of BPA was shown to exhibit, under the conditions used, an overall pseudo-zero order kinetics in regard to the allylic substrate. Also described are the highly selective palladium catalyzed asymmetric syntheses of the cyclic and acyclic allylic tert-butylsulfones 2 aa, 2 b, 2 c, 2 d and 4 a-c, respectively, and of the cyclic and acyclic allylic 2-pyrimidyl-, 2-pyridyl-, and 4-chlorophenylsulfides 5 aa, 5 b, 5 ab, 6 aa-ac, 6 ba and 6 bb, respectively, from the corresponding racemic carbonates and sulfinate anions and thiols, respectively, in the presence of BPA. Synthesis of the E-configured allylic sulfides 6 aa, 6 ab, 6 ac and 6 bb was accompanied by the formation of minor amounts of the corresponding Z isomers. The analogous synthesis of allylic tert-butylsulfides from allylic carbonates and tert-butylthiol by using BPA could not be achieved. Reaction of the cyclopentenyl esters rac-1 da and rac-1 db with 2-pyrimidinethiol gave the allylic sulfide 5 c having only a low ee value. Similar results were obtained in the case of the reaction of the cyclohexenyl carbonate rac-1 a and of the acyclic carbonates rac-3 aa and rac-3 ba with 2-pyridinethiol and lead to the formation of the sulfides 5 ab, 6 ab, and 6 bb, respectively. The low ee values may be ascribed to the operating of a "memory effect", that is, both enantiomers of the substrate give the substitution product with different enantioselectivities. However, in the reaction of the racemic carbonate rac-1 a as well as of the highly enriched enantiomers 1 a (>/=99 % ee) and ent-1 a (>/=99 % ee) with 2-pyrimidinethiol the ee values of the substrates and the substitution product remained constant until complete conversion. Similar results were obtained in the reaction of the cyclic carbonates rac-1 a, ent-1 a (>/=99 % ee) and ent-1 c (>/=99 % ee) with lithium tert-butylsulfinate. Thus, in the case of rac-1 a and 2-pyrimidinthiol and tert-butylsulfinate anion as nucleophiles the enantioselectivity of the substitution step is, under the conditions used, independent of the chirality of the substrate; this shows that no "memory effect" is operating in this case. Hydrolysis of the carbonates ent-1 a-c, ent-3 aa and ent-3 ba, which were obtained through kinetic resolution, afforded the enantiomerically highly enriched cyclic allylic alcohols 9 a-c (>/=99 % ee) and acyclic allylic alcohols 10 a (>/=99 % ee) and 10 b (99 % ee), respectively.  相似文献   

20.
The asymmetric synthesis of 1,3-oxathiolan-5-one derivatives through an enzyme-catalyzed, dynamic covalent kinetic resolution strategy is presented. Dynamic hemithioacetal formation combined with intramolecular, lipase-catalyzed lactonization resulted in good conversions with moderate to good enantiomeric excess (ee) for the final products. The process was evaluated for different lipase preparations, solvents, bases, and reaction temperatures, where lipase B from Candida antarctica (CAL-B) proved most efficient. The substrate scope was furthermore explored for a range of aldehyde structures, together with the potential access to nucleoside analog inhibitor core structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号