首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sasaki Y  Avetisyan Y  Yokoyama H  Ito H 《Optics letters》2005,30(21):2927-2929
We report on the demonstration of surface-emitted terahertz- (THz-) wave difference-frequency generation from two-dimensional (2D) periodically poled lithium niobate (PPLN). The two orthogonal periodic structures individually compensate for both the phase mismatch of the launched lasers and the generated THz wave. Tunable 1.5-1.8 THz wave generation with a bandwidth of 10-GHz was obtained by use of two 2D PPLN crystals. We also confirmed that THz waves were simultaneously generated into two opposite directions, which suggests the possibility of higher THz-wave output power.  相似文献   

2.
Gorelik PV  Wong FN  Kolker D  Zondy JJ 《Optics letters》2006,31(13):2039-2041
We demonstrate continuous-wave cascaded optical parametric oscillation in which the signal field of the primary parametric oscillator internally pumps the secondary parametric oscillator. Wavelength tuning is achieved with temperature tuning and a fan-out grating structure of a dual-grating periodically poled lithium niobate crystal. Above the secondary threshold the primary signal power is clamped, and all the other output powers increase linearly with the input pump power, in accordance with theory. Cascaded parametric oscillation offers a convenient and efficient way to generate multiple tunable outputs.  相似文献   

3.
Self-optical parametric oscillation is demonstrated for the first time to our knowledge in a periodically poled neodymium-doped lithium niobate (Nd:PPLN) crystal. The crystal is pumped by a cw Ti:sapphire laser at 813.5 nm. The Nd(3+) ions absorb the 813.5-nm radiation to generate 1084-nm laser oscillation. The internally Q switched 1084-nm radiation pumps the periodically poled lithium niobate host matrix to generate optical parametric oscillation at 1.55 and 3.6 microm . Up to 24% conversion efficiency from laser to signal is observed.  相似文献   

4.
Arbore MA  Fejer MM 《Optics letters》1997,22(3):151-153
We report quasi-phase-matched singly resonant optical parametric oscillation in electric-field-poled lithium niobate waveguides. Parametric gains as high as 250%/W, an oscillation threshold of 1.6 W (peak), idler output powers of 220 mW, and a tuning range of 1180-2080 nm for pump wavelengths of 756-772 nm have been observed. Pump depletion is limited to 40% because of the multiple launched transverse modes at the pump wavelength. We predict that fully optimized waveguide singly resonant oscillators can have thresholds of ~100 mW, accessible to cw diode pumping.  相似文献   

5.
Surface-emitted terahertz- (THz-) wave generation by difference-frequency mixing with ridge-shaped periodically poled lithium niobate (PPLN) was demonstrated. The PPLN had a ridge height of 300 microm, a thickness of 20 microm, and an interaction length of 35 mm. The ridge behaves as a slab waveguide for optical pump beams. The PPLN gives rise to THz waves in opposite directions, perpendicular to the pump-beam direction. Reflecting the THz wave on one side and overlapping it with the THz wave on the other side increased the total THz-wave intensity approximately 2.7 times compared with that without reflection and mixing.  相似文献   

6.
For what is believed to be the first time, a single-longitudinal-mode passively Q-switched Nd:YAG microlaser is used to pump a narrow-bandwidth periodically poled lithium niobate (PPLN) optical parametric generator-optical parametric amplifier (OPG-OPA). Before amplification in the OPA, the output of the OPG stage was spectrally filtered with an air-spaced etalon, resulting in spectroscopically useful radiation (bandwidth, ~0.05 cm(-1) FWHM) that was tunable in 15-cm(-1) segments anywhere in the signal range 6820-6220 cm(-1) and the idler range 2580-3180 cm(-1). The ability to pump an OPG-OPA with compact, high-repetition-rate, intrinsically narrow-bandwidth microlasers is made possible by the high gain of PPLN. The result is a tunable light source that is well suited for use in portable spectroscopic gas sensors.  相似文献   

7.
Chiang AC  Lin YY  Wang TD  Huang YC  Shy JT 《Optics letters》2002,27(20):1815-1817
We report a demonstration of distributed-feedback (DFB) optical parametric oscillation (OPO) by writing photorefractive gratings in periodically poled lithium niobate (PPLN). The photorefractive DFB structures were fabricated by illumination of PPLN with UV light through a photomask and by writing of PPLN with UV-light gated interfering laser beams at 532 nm. Evidence of OPO was observed from the spectral narrowing at the 1438.8- and the 619.3-nm signal wavelengths from 1064- and 532-nm-pumped PPLN crystals with the DFB grating periods phase matched to the 4084.5- and 3774-nm idler wavelengths, respectively.  相似文献   

8.
Chiang AC  Wang TD  Lin YY  Lin ST  Lee HH  Huang YC  Chen YH 《Optics letters》2005,30(24):3392-3394
We observed parametric-generation efficiency of 1.61% from 1064 to 1071 nm and at 162 microm in a 0.5 mm thick, 45 mm long z-cut congruent lithium niobate waveguide with a pump energy of 2.2 mJ and a pump pulse width of 5.8 ns. We also measured an ultralow-threshold intensity of 70 MW/cm2 for a 1064 nm pumped parametric oscillator resonating at 1071 nm and emitting at 162 microm with a 1 mm thick, 45 mm long lithium niobate waveguide.  相似文献   

9.
We describe what is to our knowledge the first nanosecond periodically poled lithium niobate (PPLN) optical parametric oscillator (OPO) driven by a fiber laser. The source was frequency doubled by a PPLN sample before pumping a second, 20-mm-long, PPLN crystal. The OPO threshold was <10muJ, with pump depletions of as much as 45% and a tunable signal range of 945-1450 nm (1690-4450-nm idler range). We demonstrated 130-nm signal tuning by varying the pump wavelength and doubling crystal's temperature. Also, we achieved 15-nm tuning with all crystals at a constant temperature. The results demonstrate the potential of the fiber laser:PPLN combination for practical, versatile, and tunable sources.  相似文献   

10.
Collinear broadband optical parametric generation (OPG) using periodically poled lithium niobate (PPLN) crystals were designed and experimentally demonstrated with the quasi-phase matching (QPM) periods of 21.5, 24.0, and 27.0 μm. The broad gain bandwidth was accomplished by choosing a specific set of the period and the pump wavelength that allows the group velocities of the signal and the idler to match close to the degeneracy point. OPG gain bandwidth and also the spectral region could be controlled by proper design of QPM period and pump wavelength. The total OPG gain bandwidth of 600, 900, and 1200 nm was observed for the PPLN devices with QPM periods of 21.5, 24.0, and 27.0 μm, respectively. We have also observed multiple color visible generation whenever the OPG spectrum was significantly broad. From the visible peaks of the three PPLN samples, it is found that broad gain bandwidth is crucial in the temperature-insensitive collinear simultaneous RGB generation from a single crystal.  相似文献   

11.
In this article, we present studies on therahertz (THz) wave generation and frequency up-conversion in a periodically poled lithium niobate (PPLN) crystal. A frequency at 1.37 THz was generated as femtosecond pump pulses passed through a PPLN crystal with grating periods of 30 μm. The pump-induced THz wave interacts with the probe wave in the crystal by frequency mixing. The frequency up-converted THz wave is easily detected by a normal photodiode. A new scheme for generation and detection of THz wave in one non-linear crystal was proposed.  相似文献   

12.
Ashok Kaul  Ajay Mishra 《Pramana》2010,75(5):817-826
An electric-field poling process was established that yielded uniform periodically poled lithium niobate (PPLN) in 0.5 mm thick lithium niobate substrate. We have fabricated 50 mm long fanned as well as multigrating PPLNs having period variations from 25 μm to 32 μm. These PPLNs are required for quasi-phase-matched (QPM) optical parametric oscillator (OPO) applications. We have also configured a bench-top OPO set-up based on these PPLNs.  相似文献   

13.
We report the generation of simultaneous multiband mid-infrared laser output by use of periodically polled lithium niobate pumped by the 1.54-microm output from a KTP optical parametric oscillator. The multiband source is capable of producing three mid-infrared wavelengths ranging from 2.5 to 4microm . In initial experiments we obtained output powers of 542 mW near 2.5microm and 453 mW near 4microm , with power conversion efficiencies of 30% and 25%, respectively. To the best of our knowledge, this is the first demonstration of this kind in the literature.  相似文献   

14.
A high-power picosecond optical parametric oscillator (OPO) based on a 47-mm periodically poled lithium niobate crystal is described. More than 12 W of total average power-almost 8 W of signal power at 1.85 microm and more than 4 W of idler radiation at 2.5 microm -is simultaneously extracted from less than 18 W of average pump power. The OPO is synchronously pumped by 80-ps (FWHM) cw mode-locked pulses at 1.064 microm , and its output is tunable from 1.7 to 2.84microm . Nearly transform-limited signal pulses are obtained following the introduction of two intracavity etalons.  相似文献   

15.
We demonstrate an angle-tuned signal-resonated optical parametric oscillator (OPO) with periodically poled lithium niobate (PPLN) pumped by a diode-pumped Nd:YVO4 laser. 1499.8 - 1506.6 nm of signal wavelength is achieved at 140℃ by rotating a 29-μm period PPLN from 0° - 10.22° in the x-y plane while keeping the pump wave vertical to the resonator mirrors. Two pairs of the signal and idler waves of the same wavelengths can be achieved symmetrically for each pair of angles of rotation with same absolute value and opposite sign. Theoretical analyses on angle-tuned PPLN-OPO with pump wave vertical to the resonator mirrors are presented and in good agreement with our experimental results. It is also found that all interacting waves in the cavity (not inside the crystal) are always collineax for PPLN-OPO with the pump wave vertical to the resonator mirrors while phase-matching is noncollinear within the crystal.  相似文献   

16.
This paper reports on a high-repetition-rate dual signal-wave (DSW) optical parametric oscillator (OPO) operating at the 1.5 μm band with tunable wavelength intervals from 2.5 nm to 69.1 nm. Two periodically poled crystals, a periodically poled lithium niobate (PPLN) with multiple gratings and a single grating MgO-doped PPLN (PPMgOLN), are cascaded in the same OPO cavity to generate dual signal-waves by using quasi-phase-matched (QPM) technique. The pump source was a Q-switched diode-pumped Nd:YVO4 laser operating at 50 kHz. At an incident pump power of 3 W, an average output power of 169.6 mW at 1489.2 nm and 1558.3 nm has been achieved.  相似文献   

17.
Tunable coherent emission is generated in a single-pass,cascaded wavelength conversion process from mode-locked laser-pumped monolithic periodically poled lithium niobate(PPLN).Three ranges of wavelength,including visible output from 628 nm to 639 nm,near-infrared output from 797 nm to 816 nm,and mid-infrared output from 3167 nm to 3459 nm,were obtained from the monolithic PPLN,which consists of a 10-mm section for 532-nm-pumped optical parametric generation(OPG)and a 7-mm section for 1064-nm-pumped sum frequency generation(SFG).A pump-to-signal conversion efficiency of 23.4%for OPG at 50°C and a quantum efficiency of 26.2%for SFG at 200°C were obtained.  相似文献   

18.
Meyn JP  Fejer MM 《Optics letters》1997,22(16):1214-1216
We describe electric-field poling of fine-pitch ferroelectric domain gratings in lithium tantalate and characterization of nonlinear-optical properties by single-pass quasi-phase-matched second-harmonic generation (QPM SHG). With a 7.5-microm-period grating, the observed effective nonlinear coefficient for first-order QPM SHG of 532-nm radiation is 9 pm/V, whereas for a grating with a 2.625-microm period, 2.6 pm/V was observed for second-order QPM SHG of 325-nm radiation. These values are 100% and 55% of the theoretically expected values, respectively. We derive a temperature-dependent Sellmeier equation for lithium tantalate that is valid deeper into the UV than currently available results, based on temperature-tuning experiments at different QPM grating periods combined with refractive-index data in the literature.  相似文献   

19.
Reliable generation of single photons is of key importance for fundamental physical experiments and quantum protocols.The periodically poled lithium niobate [LN) waveguide has shown promise for an integrated quantum source due to its large spectral tunability and high efficiency, benefiting from the quasi-phase-matching. Here we demonstrate photon-pair sources based on an LN waveguide periodically poled by a tightly focused femtosecond laser beam. The pair coincidence rate reaches ~8000 counts p...  相似文献   

20.
An optical parametric generator with a cylindrical periodically poled LiNbO3 crystal and a Nd:YAG commercial microchip pump laser yields continuous tuning of the emitted wavelengths over a broad spectral range (1.42-1.7 microm and 2.8-4.2 microm), with large efficiency, a high repetition rate, and low divergence, in a compact and stable device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号