首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 902 毫秒
1.
Complex vertical patterns form over the surface of an airfoil in an accelerating flow started from rest. A parametric analysis of the development of the vortex patterns was conducted, using flow visualization data. We focused on the dependence of the vortex development on angle of attack and on Reynolds number. This analysis helps understanding of complex unsteady flows and it may serve as a reference for numerical models and for computer simulationA version of this paper was presented at the Ninth Symposium on Turbulence, University of Missouri — Rolla, October 1–3, 1984  相似文献   

2.
The waving wing experiment is a fully three-dimensional simplification of the flapping wing motion observed in nature. The spanwise velocity gradient and wing starting and stopping acceleration that exist on an insect-like flapping wing are generated by rotational motion of a finite span wing. The flow development around a waving wing at Reynolds number between 10,000 and 60,000 has been studied using flow visualization and high-speed PIV to capture the unsteady velocity field. Lift and drag forces have been measured over a range of angles of attack, and the lift curve shape was similar in all cases. A transient high-lift peak approximately 1.5 times the quasi-steady value occurred in the first chord length of travel, caused by the formation of a strong attached leading edge vortex. This vortex appears to develop and shed more quickly at lower Reynolds numbers. The circulation of the leading edge vortex has been measured and agrees well with force data.  相似文献   

3.
We present the transient phenomena occurring during the impulsive control of flow separation over a NACA0015 airfoil at an incidence angle of 11° and a chord Reynolds number of 1 million. Actuation is performed via pneumatic vortex generators, impulsively activated in order to analyze the transient phenomena corresponding to the attachment process and, conversely, to transient re-separation occurring when the actuators are switched off. Measurements are performed using a linear array of unsteady pressure transducers and a single traversing crosswire. The pressure transducers are positioned in the separated region of the airfoil, which extends ∼ 0.3c upstream of the trailing edge at the above flow condition. To control the flow, the angled fluidic vortex generators are positioned in a single spanwise array located 0.3c downstream of the leading edge of the airfoil. We establish a statistical relationship between pressure and velocity signals during both the uncontrolled steady state and the transient processes of attachment and separation. The unsteady behavior of the attachment process is also qualitatively analyzed via a 0.3 million Reynold number visualizations. The emission of a “starting vortex” is evidenced. This corresponds to a transient increase of drag.  相似文献   

4.
Volumetric three-component velocimetry measurements have been taken of the flow field near a Rushton turbine in a stirred tank reactor. This particular flow field is highly unsteady and three-dimensional, and is characterized by a strong radial jet, large tank-scale ring vortices, and small-scale blade tip vortices. The experimental technique uses a single camera head with three apertures to obtain approximately 15,000 three-dimensional vectors in a cubic volume. These velocity data offer the most comprehensive view to date of this flow field, especially since they are acquired at three Reynolds numbers (15,000, 107,000, and 137,000). Mean velocity fields and turbulent kinetic energy quantities are calculated. The volumetric nature of the data enables tip vortex identification, vortex trajectory analysis, and calculation of vortex strength. Three identification methods for the vortices are compared based on: the calculation of circumferential vorticity; the calculation of local pressure minima via an eigenvalue approach; and the calculation of swirling strength again via an eigenvalue approach. The use of two-dimensional data and three-dimensional data is compared for vortex identification; a ‘swirl strength’ criterion is less sensitive to completeness of the velocity gradient tensor and overall provides clearer identification of the tip vortices. The principal components of the strain rate tensor are also calculated for one Reynolds number case as these measures of stretching and compression have recently been associated with tip vortex characterization. Vortex trajectories and strength compare favorably with those in the literature. No clear dependence of trajectory on Reynolds number is deduced. The visualization of tip vortices up to 140° past blade passage in the highest Reynolds number case is notable and has not previously been shown.  相似文献   

5.
Experiments were performed to study the stability characteristics of an unsteady circular Couette flow generated by an impulsive stop of the outer cylinder; the initial condition was a state of rigid-body rotation. Instability of the unsteady basic state is manifested by Görtler vortices, which themselves become unstable to longer-wavelength disturbances, or Taylor vortices which persist indefinitely. The quantities of primary interest are the onset time of instability, the axial vortex wavelength at onset, and the time-evolution of this wavelength. A one-dimensional photodiode array is used to gather data from the flow, which is seeded with flow-visualization material. At sufficiently high values of the Reynolds number, the influence of the inner cylinder on the onset of instability is negligible, based on comparisons with previous experimental data.  相似文献   

6.
Steady and unsteady asymmetric vortical flows around slender bodies at high angles of attack are solved using the unsteady, compressible, this-layer Navier-Stokes equations. An implicit, upwind-biased, flux-difference splitting, finite-volume scheme is used for the numerical computations. For supersonic flows past point cones, the locally conical flow assumption has been used for efficient computational studies of this phenomenon. Asymmetric flows past a 5° semiapex-angle circular cone at different angles of attack, free-stream Mach numbers, and Reynolds numbers has been studied in responses to different sources of disturbances. The effects of grid fineness and computational domain size have also been investigated. Next, the responses of three-dimensional supersonic asymmetric flow around a 5° circular cone at different angles of attack and Reynolds numbers to short-duration sideslip disturbances are presented. The results show that flow asymmetry becomes stronger as the Reynolds number and angles of attack are increased. The asymmetric solutions show spatial vortex shedding which is qualitatively similar to the temporal vortex shedding of the unsteady locally conical flow. A cylindrical afterbody is also added to the same cone to study the effect of a cylindrical part on the flow asymmetry. One of the cases of flow over a cone-cylinder configuration is validated fairly well by experimental data.  相似文献   

7.
Flow characteristics of confined, laminar milliscale slot jets are investigated from visualizations, as they impinge upon a flat target plate, with a fully developed velocity profile at the nozzle exit. The effects of Reynolds number Re and normalized nozzle-to-plate distance H/B are considered for a nozzle width B of 1.0 mm. Transition from a stable symmetric jet to an unsteady oscillating jet is observed as the Reynolds number increases (with H/B constant), where the Reynolds number associated with this transition decreases as the normalized nozzle-to-plate distance H/B increases. Instantaneous visualizations show unsteady lateral distortions of jet columns at experimental conditions corresponding to the presence of continuous sinusoidal oscillations, intermittent oscillating motion of the jet column, and jet flow fluctuation/flapping motion. Also apparent in flow visualization sequences are smoke signatures associated with instantaneous vortex structures, which form as secondary flows develop in fluid which, initially, is just adjacent to and within the jet column. Associated jet and vortex structural changes are described as different modes of unsteadiness are present, including characterization of jet column unsteadiness using jet column oscillation frequency, and lateral and streamwise extents of jet distortion.  相似文献   

8.
A numerical study on the flow past a square cylinder placed parallel to a wall, which is moving at the speed of the far field has been made. Flow has been investigated in the laminar Reynolds number (based on the cylinder length) range. We have studied the flow field for different values of the cylinder to wall separation length. The governing unsteady Navier–Stokes equations are discretized through the finite volume method on a staggered grid system. A SIMPLE type of algorithm has been used to compute the discretized equations iteratively. A shear layer of negative vortex generates along the surface of the wall, which influences the vortex shedding behind the cylinder. The flow‐field is distinct from the flow in presence of a stationary wall. An alternate vortex shedding occurs for all values of gap height in the unsteady regime of the flow. The strong positive vortex pushes the negative vortex upwards in the wake. The gap flow in the undersurface of the cylinder is strong and the velocity profile overshoots. The cylinder experiences a downward force for certain values of the Reynolds number and gap height. The drag and lift are higher at lower values of the Reynolds number. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
An experimental investigation of the high-incidence vortical flowfield over a 76/40° double-delta wing model with sharp leading edges was conducted in the Naval Postgraduate School water tunnel facility at three nominal flow Reynolds numbers of 15000, 45000, and 75000 (based on centerline chord). Extensive flow visualization studies were performed with the dye-injection technique, followed by laser Doppler velocity measurements. The primary objective of this investigation was the determination of the influence of Reynolds number on vortex interactions/trajectories, and breakdown. It was found that there is a significant influence of Reynolds number. Specifically, with the increase of flow Reynolds number the strake and wing vortex trajectories tend to move outboards and closer to the model surface, and the vortex breakdown location moves forwards toward the apex of the model. The intertwining or coiling-up feature of the vortex interaction phenomenon becomes less dominant and disappears altogether at high Reynolds numbers. These trends in the vortex interaction and bursting data are found to be in good agreement with previous wind tunnel data. Received: 26 March 1998/Accepted: 2 February 1999  相似文献   

10.
非对称槽道中涡旋波的特性研究   总被引:3,自引:0,他引:3  
利用PIV流场显示技术,对振荡流体在非对称槽道中涡旋波的产生、发展和消失的规律进 行了实验研究和分析,测得了涡旋波流场的速度矢量图,阐明了涡旋波流场周期性变化的特 点. 结合涡动力学方程,深入分析并揭示了做周期性运动的流体能在槽道中产生波的特性这 一规律,从中发现:流体周期变化的非定常性和不对称的槽道结构是形成涡旋波流动的主要 因素. 本文对涡旋波流场中各个旋涡的速度分布和涡量进行了测量和计算,分析了涡旋波 强化传质的机理,并研究了Re数对涡旋波流动的影响  相似文献   

11.
Motivated by the unsteady force generation of flying animals, vortex formation and vorticity transport processes around small aspect-ratio translating and rotating plates with a high angle of attack are investigated. Defocusing Digital Particle Image Velocimetry was employed to explore the structure and dynamics of the vortex generated by the plates. For both translating and rotating cases, we observe the presence of a spanwise flow over the plate and the consequent effect of vorticity transport due to the tilting of the leading-edge vortex. While the spanwise flow is confined inside the leading-edge vortex for the translating case, it is widely present over the plate and the wake region of the rotating case. The distribution of the spanwise flow is a prominent distinction between the vortex structures of these two cases. As the Reynolds number decreases, due to the increase in viscosity, the leading-edge and tip vortices tend to spread inside the area swept by the rotating plate. The different vorticity distributions of the low and high Reynolds number cases are consistent with the difference in measured lift forces, which is confirmed using the vorticity moment theory.  相似文献   

12.
13.
The flow over a finite-height cylinder of aspect ratio 1, with one end mounted on a ground plane and the other end free, has been studied by means of surface flow visualisation, particle image velocimetry (PIV) and surface pressure measurements. The diameter-based Reynolds number was 200,000. The mean flow topology has been identified in three areas: the horseshoe vortex system, the separated flow over the free-end and the wake region. Evidence is shown for the existence of a three-horseshoe vortex system, while the mean flow over the free-end consists of an arch vortex with its bases on the forward half of the free-end. There are two tip vortices coming off the free-end. The wake region is found to be highly unsteady, with considerable variation from the mean flow.  相似文献   

14.
Planar velocity data of the unsteady separated flow in the turbulent wake of a circular cylinder obtained by particle image velocimetry (PIV) are analyzed in order to visualize the large-scale coherent structures associated with alternating vortex shedding at a Reynolds number of 2,150. Two different cases are examined: unforced vortex shedding in the natural wake and vortex lock-on incited by forced perturbations superimposed in the inflow velocity. Proper orthogonal decomposition (POD) is employed to reconstruct the low-order wake dynamics from randomly sampled snapshots of the velocity field. The reconstructed flow is subsequently used to determine the evolution of the finite-time Lyapunov exponent (FTLE) fields which identify the Lagrangian coherent structures. The results demonstrate that the combination of methods employed offers a powerful visualization tool to uncover large-scale coherent structures and to exemplify vortex dynamics in natural and forced bluff-body wakes.  相似文献   

15.
串列双圆柱绕流问题的数值模拟   总被引:8,自引:0,他引:8  
刘松  符松 《计算力学学报》2000,17(3):260-266
本文运用有限体积方法,对绕串列放置的双圆柱的二维不可压缩流动进行了数值计算。为研究两圆柱不同间距对圆柱相互作用和尾流特征的影响,选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)在1.5~5.0之间每隔0.5共八个有代表性的间距进行了计算模拟。计算均在Re=200条件下进行。计算结果表明:对该绕流问题,流动特征在很大程度上取决于间距的大小。且间距存在一临界值,间距比从小于临界值变化到大于临界  相似文献   

16.
The Lagrangian vortex method for solving the Navier-Stokes equations is applied for numerically modeling the unsteady flow past a wing airfoil executing angular oscillations in a viscous incompressible flow. Formulas relating the unsteady forces on the airfoil and the vorticity field are derived. The calculated results are compared with the experimental data for the NACA-0012 airfoil executing harmonic oscillations in an air flow at the Reynolds number Re = 4.4 × 104.  相似文献   

17.
The unsteady low Reynolds number aerodynamics of flapping flight was investigated experimentally through flow visualization by suspended particle imagery and wall shear stress measurement from micro-array hot-film anemometry. In conjunction, a mechanism was developed to create a flapping motion with three degrees of freedom and adjustable flapping frequency. The flapping kinematics and wing shape were selected for dynamic similarity to a hummingbird during hovering flight. Flow visualization was used to validate the anemometry observations of leading edge vortex (LEV) characteristics and to investigate the necessity of spanwise flow in LEV stability. The shear sensors determined LEV characteristics throughout the translation section of the stroke period for various wing speeds. It was observed that a minimum frequency between 2 and 3.5 Hz is required for the formation and stabilization of a LEV. The vortex strength peaked around 30% of the flapping cycle (corresponding to just past the translation midpoint), which agrees with results from previous studies conducted by others. The shear sensors also indicated a mild growth in LEV size during translation sections of the wing’s motion. This growth magnitude was nearly constant through a range of operating frequencies.  相似文献   

18.
Flow visualization was used to investigate experimentally the evolution process from symmetrical shedding to staggered shedding of the starting vortex and the phenomenon of secondary separation on an elliptic cylinder at moderate Reynolds numbers. The vortex structure of the flow separation was studied. The temporal variation of separation angle and length of wake vortex were given. The photographs and experimental results provided basis for further investigation of the complicated feature of the starting process of unsteady separated flows around an elliptic cylinder. The project supported by the National Natural Science Foundation of China.  相似文献   

19.
The wake characteristics of unconfined flows over triangular prisms of different aspect ratios have been numerically analysed in the present work. For this purpose, a fixed Cartesian-grid based numerical technique that involves the porous medium approach to mimic the effect of solid blockage has been utilised. Correspondingly, laminar flow simulations ranging from the sub-critical regime (before the onset of vortex shedding) to the super-critical regime have been considered here within the limits of two-dimensionality. In the sub-critical regime, correlations relating the wake bubble length with Reynolds number (Re) have been proposed for various aspect ratios. Also, the effects of aspect ratio and Reynolds Number on the drag force coefficient (CD) have been characterised for two different geometrical orientations of the prism (base or apex facing the flow). Subsequently, the critical Reynolds number at the onset of vortex shedding has been predicted for each of the aspect ratio considered, by an extrapolation procedure. The unsteady flow characteristics of the super-critical regime are finally highlighted for different aspect ratios and triangular orientations considered in the study.  相似文献   

20.
We investigate experimentally the unsteady, three-dimensional vortex formation of low-aspect-ratio, trapezoidal flat-plate fins undergoing rotation from rest at a 90° angle of attack and Reynolds numbers of O(103). The objectives are to characterize the unsteady three-dimensional vortex structure, examine vortex saturation, and understand the effects of the root-to-tip flow for different velocity programs. The experiments are conducted in a water tank facility, and the diagnostic tools are dye flow visualization and digital particle image velocimetry. The dye visualizations show that the low-aspect-ratio plate produces symmetric ring-like vortices comprised mainly of tip-edge vorticity. They also indicate the presence of the root-to-tip velocity. For large rotational amplitudes, the primary ring-like vortex sheds and a secondary ring-like vortex is generated while the plate is still in motion, indicating saturation of the leading vortex. The time-varying vortex circulation in the flow symmetry plane provides quantitative evidence of vortex saturation. The phenomenon of saturation is observed for several plate velocity programs. The temporal development of the vortex circulation is often complex, which prevents an objective determination of an exact saturation time. This is the result of an interaction between the developing vortex and the root-to-tip flow, which breaks apart the vortex. However, it is possible to define a range of time during which the vortex reaches saturation. A formation-parameter definition is investigated and is found to reasonably predict the state corresponding to the pinch-off of the initial tip vortex across the velocity programs tested. This event is the lower bound on the saturation time range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号