首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyano-bridged molecule-based magnetic materials with reduced dimensionality, such as single-molecule magnets (SMMs) and single-chain magnets (SCMs), have attracted great research interest during the last decade. Among the cyano-based molecular precursors with ample coordinating capability, we note the ability of the tricyanometalate to link various metal ions lead to a wide diversity of structural architectures ranging from discrete polynuclear complexes to various one-dimensional (1D) assemblies. Some of them are promising cyano-bridged SMMs and SCMs. The use of capping tridentate organic ligands results in a number of clusters containing di-, tri-, tetra-, penta-, hexa-, octa-, fourteen-nuclear and various 1D metal-cyanide molecular architectures. Here we review the structural topologies of these complexes and their related magnetic properties, highlight typical examples, and point out the main possible directions that remain to be developed in this field. From the crystal engineering point of view, the compounds reviewed here should provide useful information for further design and investigation on this elusive class of cyano-bridged SMMs and SCMs.  相似文献   

2.
Spin ice is an exotic type of magnetism displayed by bulk rare-earth pyrochlore oxides. We discovered a spin ice-like magnetic relaxation of [{Mn(saltmen)}4{Mn(CN)6}](ClO4)⋅13 H2O (saltmen2−=N,N′-(1,1,2,2-tetramethylethylene)bis(salicylideneiminate)). This magnetic system can be considered as a two-dimensional network of MnIII salen-type single-molecule magnets (SMMs) in which each SMM unit (ST=4) has two orthogonally oriented axial anisotropies and is connected ferromagnetically through the [Mn(CN)6]3− unit (S=1). This work illustrates that a two-dimensional SMM network with competition between the ferromagnetic interaction and local noncollinear magnetic anisotropies on SMMs is a new type of magnetic system exhibiting slow relaxation of magnetization with a Davidson-Cole-type broad distribution of the relaxation time.  相似文献   

3.
Lanthanide ions are supposed to be promising candidates for the elements of single-molecule magnets (SMMs) because of the large magnetic momentum and anisotropy. We have established the [Dy2Cu] complex as a new SMM. A plausible mechanism for quantum tunneling of magnetization is proposed for the first time among the 4f-3d heterometallic SMMs. The magnetic coupling parameter between Dy and Cu ions was well-defined as -0.155 K.  相似文献   

4.
The preparation and properties of [Mn(4)O(3)(O(2)CPh-R)(4)(dbm)(3)] (R = H, p-Me, p-OMe, and o-Cl; dbm(-) is the anion of dibenzoylmethane) single-molecule magnets (SMMs) with virtual C(S) symmetry are reported. They were prepared by controlled potential electrolysis in 26-80% yields. The structures comprise a distorted-cubane core of virtual C(S) symmetry, in contrast to the other, more common complexes of this type with virtual C(3)(V) symmetry. Solid-state magnetic susceptibility data establish the complexes have S = 9/2 ground-state spins, and ac susceptibility studies indicate they are single-molecule magnets (SMMs). Magnetization vs dc field sweeps below 1.00 K reveal hysteresis loops confirming a SMM, with a very large step at zero applied field diagnostic of fast quantum tunneling of magnetization (QTM) through the anisotropy barrier. The fast QTM rate suggested a significant rhombic ZFS parameter E, as expected from the low (virtual C(S)) symmetry. This was confirmed by high-frequency electron paramagnetic resonance spectroscopy on polycrystalline and single-crystal studies. The results confirm the importance of symmetry on the QTM rates.  相似文献   

5.
《化学:亚洲杂志》2017,12(21):2772-2779
Single‐molecule magnets (SMMs) exhibiting slow relaxation of magnetization of purely molecular origin are highly attractive owing to their potential applications in spintronic devices, high‐density information storage, and quantum computing. In particular, lanthanide SMMs have been playing a major role in the advancement of this field because of the large intrinsic magnetic anisotropy of lanthanide metal ions. Herein, some recent breakthroughs that are changing the perspective of the field are highlighted, with special emphasis on synthetic strategies towards the design of high‐performance SMMs.  相似文献   

6.
Double-decker phthalocyanine complexes with Tb3+ or Dy3+ showed slow magnetization relaxation as a single-molecular property. The temperature ranges in which the behavior was observed were far higher than that of the transition-metal-cluster single-molecule magnets (SMMs). The significant temperature rise results from a mechanism in the relaxation process different from that in the transition-metal-cluster SMMs. The effective energy barrier for reversal of the magnetic moment is determined by the ligand field around a lanthanide ion, which gives the lowest degenerate substate a large |Jz| value and large energy separations from the rest of the substates in the ground-state multiplets.  相似文献   

7.
A one-dimensional chain of interconnected single-molecule magnets (SMMs) is obtained that consists of [Mn(4)(hmp)(6)](4+) units bridged by chloride ions. Slow magnetization relaxation is evident in the AC susceptibility data and in magnetization hysteresis measurements for [Mn(4)(hmp)(6)Cl(2)](n)(ClO(4))(2)(n). The magnetization hysteresis loops for this complex are similar to those for an SMM and show significant coercive field and steps at regular magnetic intervals. Spin-canted antiferromagnetic coupling due to misalignment of easy axes of neighboring Mn(4) units is also observed for this complex.  相似文献   

8.
Single-molecule magnets (SMMs) have attracted attention due to their potential applications in quantum computation and information storage, and many SMMs have been reported in the past two decades. In this review, we summarize the structures and the magnetic exchange interactions of pyridine alcohol-based SMMs to give a possible relationship between structure and magnetic property, providing information to generate new molecule-based magnetic materials. According to the correlated metal centers, these SMMs are separated into three segments to discuss.  相似文献   

9.
Remanence and coercivity are the basic characteristics of permanent magnets. They are also tightly correlated with the existence of long relaxation times of magnetization in a number of molecular complexes, called accordingly single‐molecule magnets (SMMs). Up to now, hysteresis loops with large coercive fields have only been observed in polynuclear metal complexes and metal‐radical SMMs. On the contrary, mononuclear complexes, called single‐ion magnets (SIM), have shown hysteresis loops of butterfly/phonon bottleneck type, with negligible coercivity, and therefore with much shorter relaxation times of magnetization. A mononuclear ErIII complex is presented with hysteresis loops having large coercive fields, achieving 7000 Oe at T=1.8 K and field variation as slow as 1 h for the entire cycle. The coercivity persists up to about 5 K, while the hysteresis loops persist to 12 K. Our finding shows that SIMs can be as efficient as polynuclear SMMs, thus opening new perspectives for their applications.  相似文献   

10.
Any single molecular magnets (SMMs) perspective for application is as good as its magnetization stability in ambient conditions. Endohedral metallofullerenes (EMFs) provide a solid basis for promising SMMs. In this study, we investigated the behavior of functionalized EMFs on a gold surface (EMF‐L‐Au). Having followed the systems molecular dynamics paths, we observed that the chemically locked inner cluster inside fullerene cage will remain locked even at room temperature due to the ligand‐effect. We have located multiple possible minima with different charge arrangements between EMF‐L‐Au fragments. Remarkably, the charge state of the EMF inner cluster remained virtually constant and so magnetic properties are expected to be untouched. © 2018 Wiley Periodicals, Inc.  相似文献   

11.
Two dysprosium isotopic isomers were synthesized: Et4N[163DyPc2] ( 1 ) with I =5/2 and Et4N[164DyPc2] ( 2 ) with I =0 (where Pc=phthalocyaninato). Both isotopologues are single‐molecule magnets (SMMs); however, their relaxation times as well as their magnetic hystereses differ considerably. Quantum tunneling of the magnetization (QTM) at the energy level crossings is found for both systems via ac‐susceptibility and μ‐SQUID measurements. μ‐SQUID studies of 1 (I =5/2) reveal several nuclear‐spin‐driven QTM events; hence determination of the hyperfine coupling and the nuclear quadrupole splitting is possible. Compound 2 (I =0) shows only strongly reduced QTM at zero magnetic field. 1 (I =5/2) could be used as a multilevel nuclear spin qubit, namely qudit (d =6), for quantum information processing (QIP) schemes and provides an example of novel coordination‐chemistry‐discriminating nuclear spin isotopes. Our results show that the nuclear spin of the lanthanide must be included in the design principles of molecular qubits and SMMs.  相似文献   

12.
High-spin molecules with easy-axis magnetic anisotropy show slow magnetic relaxation of spin-flipping along the axis of magnetic anisotropy and are called single-molecule magnets (SMMs). SMMs behave as molecular-size permanent magnets at low temperature and magnetic relaxation occurs by quantum tunneling processes; such molecules are promising candidates for use in quantum devices. We first discuss intramolecular ferromagnetic interactions for preparing high-spin molecules. Second, we determine the magnetic anisotropy for single metal ions with d(n) configurations and discuss how molecular anisotropy arises from single-ion anisotropy of the assembled component metal ions.  相似文献   

13.
The field of molecular magnetism has rapidly expanded since the discovery of single-molecule magnets (SMMs) at the beginning of the 1990s. Numerous SMMs have been studied and a broad community currently works on these systems to improve their magnetic characteristics. However, it has also become an important strategy to diversify a part of our research activity toward the organization of these magnetic molecules in order to move closer to future applications. One of the possible ways is to utilize SMMs as molecular building blocks and assemble them with the help of coordination chemistry. This strategy presents a significant challenge since the intrinsic magnetic properties of the parent SMMs can be modified, which consequently also provides a unique opportunity to investigate new behaviours at the frontier between SMMs and classical bulk magnets. Furthermore, the design of systems with "enhanced" SMM properties or magnet behaviour is theoretically possible by choosing coordinating linkers that could favour an effective ferromagnetic arrangement of the SMMs. In this perspective article, we will give an overview of the known networks based on SMMs with an emphasis on the synthetic strategies, magnetic properties, and finally possible routes to a new generation of molecular magnetic materials.  相似文献   

14.
A new series of hybrid organometallic - inorganic layered magnets with the formula [Z(III)Cp*2][M(II)M(III)(ox)3] (Z(III) = Co, Fe; M(III) = Cr, Fe; M(II) = Mn, Fe, Co, Cu, Zn; ox = oxalate; Cp* = pentamethylcyclopentadienyl) has been prepared. All of these compounds are isostructural and crystallize in the monoclinic space group C2/m, as found by X-ray structure analysis. Their structure consists of an eclipsed stacking of the bimetallic oxalate-based extended layers separated by layers of organometallic cations. These salts show spontaneous magnetization below To, which corresponds to the presence of ferro-, ferri-, or canted antiferromagnetism. Compounds in which the paramagnetic deca-methylferrocenium is used instead of the diamagnetic decamethylcobaltocenium are good examples of chemically constructed magnetic multilayers with alternating ferromagnetic and paramagnetic layers. The physical properties of this series have been thoroughly studied by means of magnetic measurements and ESR and Mossbauer spectroscopy. We have found that the two layers are electronically quasiindependent. As a consequence, the bulk properties of these magnets have not been significantly affected by the insertion of a paramagnetic layer of S = 1/2 spins in between the extended layers. In fact, the critical temperatures remain unchanged even when comparing [MCp*2]+ derivatives with [XR4]+ compounds (X = N, P; R = Ph, nPr, nBu). Nevertheless, the presence of the paramagnetic layer has been shown to have some influence on the hysteresis loops of these compounds. In the same context, the spin polarization of the paramagnetic units (which arises from the internal magnetic field created by the bimetallic layers in the ordered state) has been observed by Mossbauer and ESR spectroscopy.  相似文献   

15.
Large separation of magnetic levels and slow relaxation in metal complexes are desirable properties of single-molecule magnets (SMMs). Spin-phonon coupling (interactions of magnetic levels with phonons) is ubiquitous, leading to magnetic relaxation and loss of memory in SMMs and quantum coherence in qubits. Direct observation of magnetic transitions and spin-phonon coupling in molecules is challenging. We have found that far-IR magnetic spectra (FIRMS) of Co(PPh3)2X2 ( Co-X ; X=Cl, Br, I) reveal rarely observed spin-phonon coupling as avoided crossings between magnetic and u-symmetry phonon transitions. Inelastic neutron scattering (INS) gives phonon spectra. Calculations using VASP and phonopy programs gave phonon symmetries and movies. Magnetic transitions among zero-field split (ZFS) levels of the S=3/2 electronic ground state were probed by INS, high-frequency and -field EPR (HFEPR), FIRMS, and frequency-domain FT terahertz EPR (FD-FT THz-EPR), giving magnetic excitation spectra and determining ZFS parameters (D, E) and g values. Ligand-field theory (LFT) was used to analyze earlier electronic absorption spectra and give calculated ZFS parameters matching those from the experiments. DFT calculations also gave spin densities in Co-X , showing that the larger Co(II) spin density in a molecule, the larger its ZFS magnitude. The current work reveals dynamics of magnetic and phonon excitations in SMMs. Studies of such couplings in the future would help to understand how spin-phonon coupling may lead to magnetic relaxation and develop guidance to control such coupling.  相似文献   

16.
Addressing individual bistable magnetic molecules, known as Single Molecule Magnets (SMMs), is a fascinating goal at the borderline between molecular magnetism and spin electronics. This tutorial review focuses on the first step towards single-molecule experiments, namely the organization of SMMs on surfaces. Both preparation and characterization of surface-supported SMMs prove to be quite demanding and a multidisciplinary approach is necessary, which is described here using selected examples. We first illustrate the chemical strategies devised to assemble SMMs and to control their orientation on surfaces. Then, we present characterization tools, which have been selected on the basis of their relevance to address specific points, i.e. the chemical composition of the deposited SMM films, the organization of the molecules on the surface, the intramolecular arrangement of the spins, the magnetic anisotropy of SMMs, and eventually the dynamics of their magnetization on surfaces. Particular attention is devoted to techniques exploiting synchrotron light.  相似文献   

17.
A general giant‐spin Hamiltonian (GSH) describing an effective spin multiplet of an exchange‐coupled metal cluster with dominant Heisenberg interactions was derived from a many‐spin Hamiltonian (MSH) by treating anisotropic interactions at the third order of perturbation theory. Going beyond the existing second‐order perturbation treatment allows irreducible tensor operators of rank six (or corresponding Stevens operator equivalents) in the GSH to be obtained. Such terms were found to be of crucial importance for the fitting of high‐field EPR spectra of a number of single‐molecule magnets (SMMs). Also, recent magnetization measurements on trigonal and tetragonal SMMs have found the inclusion of such high‐rank axial and transverse terms to be necessary to account for experimental data in terms of giant‐spin models. While mixing of spin multiplets by local zero‐field splitting interactions was identified as the major origin of these contributions to the GSH, a direct and efficient microscopic explanation had been lacking. The third‐order approach developed in this work is used to illustrate the mapping of an MSH onto a GSH for an trigonal Fe3Cr complex that was recently investigated by high‐field EPR spectroscopy. Comparisons between MSH and GSH consider the simulation of EPR data with both Hamiltonians, as well as locations of diabolical points (conical intersections) in magnetic‐field space. The results question the ability of present high‐field EPR techniques to determine high‐rank zero‐field splitting terms uniquely, and lead to a revision of the experimental GSH parameters of the Fe3Cr SMM. Indeed, a bidirectional mapping between MSH and GSH effectively constrains the number of free parameters in the GSH. This notion may in the future facilitate spectral fitting for highly symmetric SMMs.  相似文献   

18.
The influence of nuclear spin on the magnetic hysteresis of a single‐molecule is evidenced. Isotopically enriched DyIII complexes are synthesized and an isotopic dependence of their magnetic relaxation is observed. This approach is coupled with tuning of the molecular environment through dilution in an amorphous or an isomorphous diamagnetic matrix. The combination of these approaches leads to a dramatic enhancement of the magnetic memory of the molecule. This general recipe can be efficient for rational optimization of single‐molecule magnets (SMMs), and provides an important step for their integration into molecule‐based devices.  相似文献   

19.
Dong Shao  Xin‐Yi Wang 《中国化学》2020,38(9):1005-1018
Single‐molecule magnets (SMMs) are paramagnetic molecules that can be magnetized below a certain temperature and have potential applications in high‐density information storage, magnetic qubits, spintronic devices, etc. The discovery of the first SMM, Mn12, opened a new era of molecular magnetism and promoted collaborative researches between chemists and physicists for their exotic quantum as well as classical magnetic properties. In the recent past, great efforts have been made to develop strategies for constructing new SMMs with high energy barriers (Ueff) and blocking temperatures (TB), resulting in great and fast development of SMMs. In this concise review, we highlight the main synthetic approaches and representative results in the design and synthesis of high performance SMMs. We hope to give the readers a basic understanding of SMMs and a snapshot of the representative researches on SMMs from a perspective of synthetic chemists.  相似文献   

20.
林双燕  郭云南  许公峰  唐金魁 《应用化学》2010,27(12):1365-1371
在信息存储和量子计算方面具有广阔应用前景的单分子磁体及相关研究中,应用各向异性显著的稀土离子以期提高单分子磁体自旋翻转能垒的研究倍受关注。 本文综述了稀土单分子磁体的研究进展,并着重介绍了单核、三核及四核镝配合物单分子磁体的磁学性质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号