首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several genomic disorders are caused by an excessive number of DNA triplet repeats. We developed a DNA-templated reaction in which product formation occurs only when the number of repeats exceeds a threshold indicative for the outbreak of Chorea Huntington. The combined use of native chemical PNA ligation and auxiliary DNA probes enabled reactions on templates obtained from human genomic DNA.  相似文献   

2.
A system capable of performing both DNA-templated chemical reactions and detection of bond formations is reported. Photocleavable DNA templates direct reactions. Products from bond-forming events re-ligate original templates, amplifiable by PCR, therefore distinguishing bond formation from background. This system provides a novel approach for discovering potential new chemical reactions.  相似文献   

3.
This paper describes a simple strategy for DNA immobilization on chemically modified and patterned silicon surfaces. The photochemical modification of hydrogen-terminated Si(111) with undecylenic acid leads to the formation of an organic monolayer covalently attached to the surface through Si-C bonds without detectable reaction of the carboxylic acid group, providing indirect support of a free radical mechanism. Chemical activation of the acid function was achieved by a simple chemical route using N-hydroxysuccinimide (NHS) in the presence of N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide hydrochloride. Single strand DNA with a 5'-dodecylamine group was then coupled to the NHS-activated surface by amide bond formation. Using a previously reported chemical patterning approach, we have shown that DNA can be immobilized on silicon surfaces in spatially well-resolved domains. Methoxytetraethyleneglycolamine was used to inhibit nonspecific adsorption. The resulting DNA-modified surfaces have shown good specificity and chemical and thermal stability under hybridization conditions. The sequential reactions on the surface were monitored by ATR-FTIR, X-ray Photoelectron Spectroscopy, and fluorescence spectroscopy.  相似文献   

4.
A new procedure was developed as an alternative to the enzymatic assembly of natural and modified double-stranded DNAs using chemical reagent (chemical ligation). BrCN was suggested as an efficient coupling reagent, which induces superfast reactions in DNA duplexes. The physicochemical properties and the structure of new types of DNA duplexes, which are the substrates for chemical ligation, with breaks in phosphodiester chains, including concatemers, were studied. Chemical ligation was applied to prepare biologically active 17–200 base-pair double-stranded DNAs and DNA-RNA block-copolymers, to incorporate various modifications into DNA duplexes including pyrophosphate and phosphoramidate unnatural internucleotide bonds. The unique possibilities of this approach were demonstrated in the development of methods for circularization of oligodeoxy ribonucleotides and assembly of branched DNAs. The structural-kinetic concept of chemicalligation was created and the relationship between the reactivity of interacting groups and sequence-dependent local conformation of the ligation site in B-DNA was established. The lesser efficiency of chemical ligation of RNA fragments in comparison to that of DNA analogs was demonstrated and rationalized. This approach was used as a sensitive monitor of a stable double helix formation and third-strand binding to a DNA duplex.Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1889–1911, August, 1996.  相似文献   

5.
UV irradiation of cellular DNA leads to the formation of a number of defined mutagenic DNA lesions. Here we report the discovery of new intrastrand C(4-8)G and G(8-4)C cross-link lesions in which the C(4) amino group of the cytosine base is covalently linked to the C(8) position of an adjacent dG base. The structure of the novel lesions was clarified by HPLC-MS/MS data for UV-irradiated DNA in combination with chemical synthesis and direct comparison of the synthetic material with irradiated DNA. We also report the ability to generate the lesions directly in DNA with the help of a photoactive precursor that was site-specifically incorporated into DNA. This should enable detailed chemical and biochemical investigations of these lesions.  相似文献   

6.
Abstract— Furocoumarins, potent skin therapy and tanning agents, form covalent adducts in a photochemical reaction with unsaturated fatty acids. These adducts and the chemical kinetics of their formation have been characterized by chromatography, isotopic tracers, electronic absorbance and fluorescence spectroscopy and mass spectrometry. Adduct formation does not require oxygen. The quantum yield of adduct formation in ethanol or methanol-water solutions is comparable to the quantum yield for formation of furocoumarin-thymine adducts in DNA.  相似文献   

7.
The cross-link dG-to-dG is an important product of DNA nitrosation. Its formation has commonly been attributed to nucleophilic substitution of N2 in a guaninediazonium ion by guanine, while recent studies suggest guanine addition to a cyanoamine derivative formed after dediazoniation, deprotonation, and pyrimidine ring-opening. The chemical viability of the latter mechanism is supported here by the experimental demonstration of rG-to-aG formation via rG addition to a synthetic cyanoamine derivative. Thus, all known products of nitrosative guanine deamination are consistent with the postulate of pyrimidine ring-opening. This postulated mechanism not only explains what is already known but also suggests that other products and other cross-links also might be formed in DNA deamination. The study suggests one possible new product: the structure isomer aG(N1)-to-rG(C2) of the classical G(N2)-to-G(C2) cross-link. While the formation of aG(N2)-to-rG(C2) has been established by chemical synthesis, the structure isomer aG(N1)-to-rG(C2) has been assigned tentatively based on its MS/MS spectrum and because this assignment is reasonable from a mechanistic perspective. Density functional calculations show preferences for the amide-iminol tautomer of the classical cross-link G(N2)-to-G(C2) and the amide-amide tautomer of G(N1)-to-G(C2). Moreover, the results suggest that both cross-links are of comparable thermodynamic stability, and that there are no a priori energetic or structural reasons that would prevent the formation of the structure isomer in the model reaction or in DNA.  相似文献   

8.
Copper-phenanthroline complexes and their conjugates are useful reagents for studying nucleic acid interactions. Although DNA cleavage by such complexes was discovered more than 20 years ago, significant questions remain unanswered regarding the chemical mechanism(s) by which DNA is damaged. Kinetic evidence is provided, which demonstrates that the major pathway for DNA damage by a minor groove binding molecule conjugated to copper phenanthroline (6) involves C1'-oxidation. Additional experiments using 6 and a DNA substrate containing 2-deoxyribonolactone (1) show that direct strand breaks are produced via beta-elimination from 1. These studies support the original mechanism for DNA damage by copper phenanthroline put forth by Sigman and a more recent proposal concerning the mechanism for direct strand break formation.  相似文献   

9.
Even in the worst of conditions, such as those which occurred during mass extinction events, life on Earth never totally stopped. Aggressive chemical and physical attacks able to sterilize or poison living organisms occurred repeatedly. Surprisingly, DNA was not degraded, denatured or modified to the point of losing the capability of transferring the genetic information to the next generations. After the events of mass extinction life was able to survive and thrive. DNA was passed on despite being an extremely fragile biomolecule. The potential implications of hydroxyapatite protection of DNA are discussed in this Concept article including how DNA acts as a template for hydroxyapatite (HAp) formation, how cell death can trigger biomineralization, and how DNA can be successfully released from HAp when the conditions are favorable for life.  相似文献   

10.
Temporal and spatial control over polydopamine formation on the nanoscale can be achieved by installing an irradiation‐sensitive polymerization system on DNA origami. Precisely distributed G‐quadruplex structures on the DNA template serve as anchors for embedding the photosensitizer protoporphyrin IX, which—upon irradiation with visible light—induces the multistep oxidation of dopamine to polydopamine, producing polymeric structures on designated areas within the origami framework. The photochemical polymerization process allows exclusive control over polydopamine layer formation through the simple on/off switching of the light source. The obtained polymer–DNA hybrid material shows significantly enhanced stability, paving the way for biomedical and chemical applications that are typically not possible owing to the sensitivity of DNA.  相似文献   

11.
Remarkable enhancement of guanine alkylation just opposite a bulged site by 13R-1 compared with those in normal duplex DNA is ascribable to the formation of a unique intercalated complex that is attainable only at the bulged sites (see picture). This observation suggests that 13R-1 can be used as a chemical probe for the bulged structure of DNA.  相似文献   

12.
13.
Oxidatively generated damage to DNA induced by a pyrenyl photosensitizer residue (Py) covalently attached to a guanine base in the DNA sequence context 5'-d(CAT[G1Py]CG2TCCTAC) in aerated solutions was monitored from the initial one-electron transfer, or hole injection step, to the formation of chemical end-products monitored by HPLC, mass spectrometry, and high-resolution gel electrophoresis. Hole injection into the DNA was initiated by two-photon excitation of the Py residue with 355 nm laser pulses, thus producing the radical cation Py*+ and hydrated electrons; the latter are trapped by O2, thus forming the superoxide anion O2*-. The decay of the Py*+ radical is correlated with the appearance of the G*+/G(-H)* radical on microsecond time scales, and O2*- combines with guanine radicals at G1 to form alkali-labile 2,5-diamino-4H-imidazolone lesions (Iz1Py). Product formation in the modified strand is smaller by a factor of 2.4 in double-stranded than in single-stranded DNA. In double-stranded DNA, hot piperidine-mediated cleavage at G2 occurs only after G1Py, an efficient hole trap, is oxidized thus generating tandem lesions. An upper limit of hole hopping rates, khh < 5 x 103 s-1 from G1*+-Py to G2 can be estimated from the known rates of the combination reaction of the G(-H)* and O2*- radicals. The formation of Iz products in the unmodified complementary strand compared to the modified strand in the duplex is approximately 10 times smaller. The formation of tandem lesions is observed even at low levels of irradiation corresponding to "single-hit" conditions when less than approximately 10% of the oligonucleotide strands are damaged. A plausible mechanism for this observation is discussed.  相似文献   

14.
We employ a large scale molecular simulation based on bond-order ReaxFF to simulate the chemical reaction and study the damage to a large fragment of DNA molecule in the solution by ionizing radiation. We illustrate that the randomly distributed clusters of diatomic OH radicals that are primary products of megavoltage ionizing radiation in water-based systems are the main source of hydrogen abstraction as well as formation of carbonyl and hydroxyl groups in the sugar moiety that create holes in the sugar rings. These holes grow up slowly between DNA bases and DNA backbone, and the damage collectively propagates to a DNA single and double strand break.  相似文献   

15.
16.
17.
Researchers seeking to improve the efficiency and cost effectiveness of the bioactive small-molecule discovery process have recently embraced selection-based approaches, which in principle offer much higher throughput and simpler infrastructure requirements compared with traditional small-molecule screening methods. Since selection methods benefit greatly from an information-encoding molecule that can be readily amplified and decoded, several academic and industrial groups have turned to DNA as the basis for library encoding and, in some cases, library synthesis. The resulting DNA-encoded synthetic small-molecule libraries, integrated with the high sensitivity of PCR and the recent development of ultra high-throughput DNA sequencing technology, can be evaluated very rapidly for binding or bond formation with a target of interest while consuming minimal quantities of material and requiring only modest investments of time and equipment. In this tutorial review we describe the development of two classes of approaches for encoding chemical structures and reactivity with DNA: DNA-recorded library synthesis, in which encoding and library synthesis take place separately, and DNA-directed library synthesis, in which DNA both encodes and templates library synthesis. We also describe in vitro selection methods used to evaluate DNA-encoded libraries and summarize successful applications of these approaches to the discovery of bioactive small molecules and novel chemical reactivity.  相似文献   

18.
19.
The emergence of unnatural DNA bases provides opportunities to demystify the mechanisms by which DNA polymerases faithfully decode chemical information on the template. It was previously shown that two unnatural cytosine bases (termed “M‐fC” and “I‐fC”), which are chemical labeling adducts of the epigenetic base 5‐formylcytosine, can induce C‐to‐T transition during DNA amplification. However, how DNA polymerases recognize such unnatural cytosine bases remains enigmatic. Herein, crystal structures of unnatural cytosine bases pairing to dA/dG in the KlenTaq polymerase‐host–guest complex system and pairing to dATP in the KlenTaq polymerase active site were determined. Both M‐fC and I‐fC base pair with dA/dATP, but not with dG, in a Watson–Crick geometry. This study reveals that the formation of the Watson–Crick geometry, which may be enabled by the A‐rule, is important for the recognition of unnatural cytosines.  相似文献   

20.
Acylfulvenes (AFs) are a class of semisynthetic agents with high toxicity toward certain tumor cells, and for one analogue, hydroxymethylacylfulvene (HMAF), clinical trials are in progress. DNA alkylation by AFs, mediated by bioreductive activation, is believed to contribute to cytotoxicity, but the structures and chemical properties of corresponding DNA adducts are unknown. This study provides the first structural characterization of AF-specific DNA adducts. In the presence of a reductive enzyme, alkenal/one oxidoreductase (AOR), AF selectively alkylates dAdo and dGuo in reactions with a monomeric nucleoside, as well as in reactions with naked or cellular DNA, with 3-alkyl-dAdo as the apparently most abundant AF-DNA adduct. Characterization of this adduct was facilitated by independent chemical synthesis of the corresponding 3-alkyl-Ade adduct. In addition, in naked or cellular DNA, evidence was obtained for the formation of an additional type of adduct resulting from direct conjugate addition of Ade to AF followed by hydrolytic cyclopropane ring-opening, indicating the potential for a competing reaction pathway involving direct DNA alkylation. The major AF-dAdo and AF-dGuo adducts are unstable under physiologically relevant conditions and depurinate to release an alkylated nucleobase in a process that has a half-life of 8.5 h for 3-alkyladenine and less than approximately 2 h for dGuo adducts. DNA alkylation further leads to single-stranded DNA cleavage, occurring exclusively at dGuo and dAdo sites, in a nonsequence-specific manner. In AF-treated cells that were transfected with either AOR or control vectors, the DNA adducts identified match those from in vitro studies. Moreover, a positive correlation was observed between DNA adduct levels and cell sensitivity to AF. The potential contributing roles of AOR-mediated bioactivation and adduct stability to the cytotoxicity of AF are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号