首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
We present theoretically the Zeeman coupling and exchange-induced swap action in spin-based quantum dot quantum computer models in the presence of magnetic field. We study the valence and conduction band states in a double quantum dots made in diluted magnetic semiconductor. The latter have been proven to be very useful in building an all-semiconductor platform for spintronics. Due to a strong p–d exchange interaction in diluted magnetic semiconductor (Cd0.57Mn0.43Te), the relative contribution of this component is strongly affected by an external magnetic field, a feature that is absent in nonmagnetic double quantum dots. We determine the energy spectrum as a function of magnetic field within the Hund–Mulliken molecular-orbit approach and by including the Coulomb interaction. Since we show that the ground state of the two carriers confined in a vertically coupled quantum dots provide a possible realization for a gate of a quantum computer, the crossing between the lowest states, caused by the giant spin splitting, can be observed as a pronounced jump in the magnetization of small magnetic field amplitude. Finally, we determine the swap time as a function of magnetic field and the inter dot distance. We estimate quantitatively swap errors caused by the field, establishing that error correction would, in principle, be possible in the presence of nonuniform magnetic field in realistic structures.  相似文献   

5.
The room‐temperature ferromagnetism and the Raman spectroscopy of the Cu‐doped Zn1−xCoxO powders prepared by the sol–gel method are reported. The x‐ray diffraction (XRD) data confirmed that the wurtzite structure of ZnO is maintained for ZnO doped with Co below 10 at%. The magnetization–field curves measured at room temperature demonstrated that all Co‐doped ZnO powders were paramagnetic. Ferromagnetic ordering is observed for the samples doped with Cu in Zn0.98Co0.02O and strongly depends on the concentration of Cu. The relative strength of the second‐order LO peak to the first‐order one in the Raman spectra, which is related to the carrier concentration, of the Cu‐doped Zn0.98Co0.02O powder is strongly correlated with the saturation magnetic moment of the system. This seems to be in favor of the Ruderman‐Kittel‐Kasuya‐Yosida (RKKY) or double exchange mechanism of the ferromagnetism in this system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
7.
8.
9.
The bulk samples with nominal composition Zn1−x Mnx O [x = 5% and 7%] were synthesized at 930 °C by Standard Solid State Reaction method. The structural analysis reveals the single phase nature. The Topography study indicates the distribution of the particles. Magnetic property was affirmed by Vibrating Sample Magnetometer, Zn1−x Mnx O (with x = 5%), low concentration of dopant shows good ferromagnetism compared to high concentration in Zn1−x Mnx O (with x = 7%).  相似文献   

10.
Excitonic properties and the dynamics are reported in quantum dots (QDs) and quantum wells (QW) of diluted magnetic semiconductors. Transient spectroscopies of photoluminescence and nonlinear-optical absorption and emission have been made on these quantum nanostructures. The Cd1−x MnxSe QDs show the excitonic magnetic polaron effect with an increased binding energy. The quantum wells of the Cd1−x MnxTe/ZnTe system display fast energy and dephasing relaxations of the free and localized excitons as well as the tunneling process of carriers and excitons in the QWs depending on the barrier widths. The observed dynamics and the enhanced excitonic effects are the inherent properties of the diluted magnetic nanostructures. Fiz. Tverd. Tela (St. Petersburg) 40, 846–848 (May 1998) Published in English in the original Russian journal. Reproduced here with stylistic changes by the Translation Editor.  相似文献   

11.
The magnetic and magneto-optical properties of a Cr-doped II-VI semiconductor ZnTe were investigated. Magnetic circular dichroism measurements showed a strong interaction between the sp carriers and localized d spins, indicating that Zn(1-x)Cr(x)Te is a diluted magnetic semiconductor. The Curie temperature of the film with x=0.20 was estimated to be 300+/-10 K, which is the highest value ever reported for a diluted magnetic semiconductor in which sp-d interactions were confirmed. In spite of its high Curie temperature, Zn(1-x)Cr(x)Te film shows semiconducting electrical transport properties.  相似文献   

12.
Theory of diluted magnetic semiconductor ferromagnetism   总被引:1,自引:0,他引:1  
We present a theory of carrier-induced ferromagnetism in diluted magnetic semiconductors ( III1-xMnxV) which allows for arbitrary itinerant-carrier spin polarization and dynamic correlations. Both ingredients are essential in identifying the system's elementary excitations and describing their properties. We find a branch of collective modes, in addition to the spin waves and Stoner continuum which occur in metallic ferromagnets, and predict that the low-temperature spin stiffness is independent of the strength of the exchange coupling between magnetic ions and itinerant carriers. We discuss the temperature dependence of the magnetization and the heat capacity.  相似文献   

13.
14.
The properties of the bound states of magnetic impurities and localized carriers in two-dimensional semiconductor systems with strong Rashba spin-orbit interaction have been investigated. The peculiar behavior of the bound states of an electron in such a system leads to the dependence of the ground state of polarons on the external magnetic field. This results in a jump in the dependence of the magnetization on the applied field.  相似文献   

15.
Magnetic properties of the planar structure consisting of a ferromagnetic metal and the diluted magnetic semiconductor are considered (by the example of the structure Fe/Ga(Mn)As, experimentally studied in [F. Maccherozzi, M. Sperl, G. Panaccione, J. Mina'r, S. Polesya, H. Ebert, U. Wurstbauer, M. Hochstrasser, G. Rossi, G. Woltersdorf, W. Wegscheider, C.H. Back, Phys. Rev. Lett. 101 (2008) 267201]). In the framework of the mean field theory, we demonstrate the presence of the significant amplification of the ferromagnetism, induced by the ferromagnetic metal in the near-interface semiconductor area, due to the indirect interaction of magnetic impurities. This results in the substantial expansion of the temperature range where the magnetization in the boundary semiconductor region exists, that might be important for possible practical applications.  相似文献   

16.
ZnCoO稀磁半导体的室温磁性   总被引:1,自引:0,他引:1       下载免费PDF全文
采用固相反应法,将ZnO和Co2O3粉末按不同的成分配比混合,制备了稀磁半导体Zn1-xCoxO (x=0.02,0.06,0.10)材料.并使用H2气氛退火技术对样品进行了处理,得到了具有室温铁磁性的掺Co氧化锌稀磁半导体.利用全自动X射线衍射仪、X射线光电子能谱仪、高分辨透射电子显微镜和超导量子干涉器件磁强计对样品的结构、晶粒的尺寸、微观形貌以及磁性等进行了测量和标度. 关键词: 稀磁半导体 氧化锌 掺杂 固相反应法  相似文献   

17.
18.
The giant Zeeman splitting of free excitons is measured in Ga(1-x)Fe(x)N. Magneto-optical and magnetization data imply the ferromagnetic sign and a reduced magnitude of the effective p-d exchange energy governing the interaction between Fe(3+) ions and holes in GaN, N_{0}beta(app)=+0.5+/-0.2 eV. This finding corroborates the recent suggestion that the strong p-d hybridization specific to nitrides and oxides leads to significant renormalization of the valence band exchange splitting.  相似文献   

19.
20.
We present a dynamical model that reproduces the observed time evolution of the magnetization in diluted magnetic semiconductor films after weak laser excitation. Based on a many-particle expansion of the exact p–d exchange interaction, our approach goes beyond the usual mean-field approximation. Numerical results demonstrate that the hole spin relaxation plays a crucial role for explaining the ultrafast demagnetization processes observed experimentally. The influence of the laser power on the magnetization dynamics is also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号