首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coded excitation can improve the signal-to-noise ratio (SNR) in ultrasound tissue harmonic imaging (THI). However, it could suffer from the increased sidelobe artifact caused by incomplete pulse compression due to the spectral overlap between the fundamental and harmonic components of ultrasound signal after nonlinear propagation in tissues. In this paper, three coded tissue harmonic imaging (CTHI) techniques based on bandpass filtering, power modulation and pulse inversion (i.e., CTHI-BF, CTHI-PM, and CTHI-PI) were evaluated by measuring the peak range sidelobe level (PRSL) with varying frequency bandwidths. From simulation and in vitro studies, the CTHI-PI outperforms the CTHI-BF and CTHI-PM methods in terms of the PRSL, e.g., −43.5 dB vs. −24.8 dB and −23.0 dB, respectively.  相似文献   

2.
Behar V  Adam D 《Ultrasonics》2004,42(10):1101-1109
A linear array imaging system with coded excitation is considered, where the proposed excitation/compression scheme maximizes the signal-to-noise ratio (SNR) and minimizes sidelobes at the output of the compression filter. A pulse with linear frequency modulation (LFM) is used for coded excitation. The excitation/compression scheme is based on the fast digital mismatched filtering. The parameter optimization of the excitation/compression scheme includes (i) choice of an optimal filtering function for the mismatched filtering; (ii) choice of an optimal window function for tapering of the chirp amplitude; (iii) optimization of a chirp-to-transducer bandwidth ratio; (iv) choice of an appropriate n-bit quantizer. The simulation results show that the excitation/compression scheme can be implemented as a Dolph–Chebyshev filter including amplitude tapering of the chirp with a Lanczos window. An example of such an optimized system is given where the chirp bandwidth is chosen to be 2.5 times the transducer bandwidth and equals 6 MHz: The sidelobes are suppressed to −80 dB, for a central frequency of 4 MHz, and to −94 dB, for a central frequency of 8 MHz. The corresponding improvement of the SNR is 18 and 21 dB, respectively, when compared to a conventional short pulse imaging system. Simulation of B-mode images demonstrates the advantage of coded excitation systems of detecting regions with low contrast.  相似文献   

3.
In this paper we propose a skin-scanning technique with a high-frequency ultrasound imaging system that enables images to be acquired at the fixed depth of field of a single-element focused transducer along the profile of an object contour by simultaneously moving the transducer in the horizontal and vertical directions. The scanning path, which closely parallels the profile of the object contour, was determined from the intensity difference between an object and the background in a brightness-mode image. The transducer moved along the profile of the object contour while maintaining a constant distance interval between adjacent pairs of ultrasonic signals in the horizontal direction. The image was then reconstructed by applying an alignment process to eliminate the distortion. The performance of skin-scanning technique was verified in vitro experiment using an arc-shaped phantom and the results showed a percentage error of 0.55% for the volumetric blood flow estimates. Moreover, in vivo experiment on a subcutaneous tumor was also performed. The results indicated that the proposed technique can accurately estimate the blood flow information along the profile of the object contour and avoid distortion of the morphology of blood vessels. The skin-scanning technique has potential for assessing superficial blood flows and prognoses in the oncology and dermatology fields.  相似文献   

4.
Song J  Chang JH  Song TK  Yoo Y 《Ultrasonics》2011,51(4):516-521
Coded tissue harmonic imaging with pulse inversion (CTHI-PI) based on a linear chirp signal can improve the signal-to-noise ratio with minimizing the peak range sidelobe level (PRSL), which is the main advantage over CTHI with bandpass filtering (CTHI-BF). However, the CTHI-PI technique could suffer from motion artifacts due to decreasing frame rate caused by two firings of opposite phase signals for each scanline. In this paper, a new CTHI method based on a nonlinear chirp signal (CTHI-NC) is presented, which can improve the separation of fundamental and harmonic components without sacrificing frame rate. The nonlinear chirp signal is designed to minimize the PRSL value by optimizing its frequency sweep rate and time duration. The performance of the CTHI-NC method was evaluated by measuring the PRSL and mainlobe width after compression. From the in vitro experiments, the CTHI-NC provided the PRSL of −40.6 dB and the mainlobe width of 2.1 μs for the transmit quadratic nonlinear chirp signal with the center frequency of 2.1 MHz, the fractional bandwidth at −6 dB of 0.6 and the time duration of 15 μs. These results indicate that the proposed method could be used for improving frame rates in CTHI while providing comparable image quality to CTHI-PI.  相似文献   

5.
Kim BH  Kim GD  Song TK 《Ultrasonics》2007,46(2):148-154
The compression error of post-compression based coded excitation techniques increases with decreasing f-number, which causes the elevation of side-lobe levels. In this paper, a post-compression based coded excitation technique with reduced compression errors through dynamic aperture control is proposed. To improve the near-field resolution with no frame rate reduction, the proposed method performs simultaneous transmit multi-zone focusing using two mutually orthogonal complementary Golay codes. In the proposed method, the two mutually orthogonal sequences of length 16 are simultaneously transmitted toward two different focal depths, which are separately compressed into two short pulses on receive after dynamic focusing is performed. After carrying out the same transmit-receive operation for the same scan line with the complementary set of the orthogonal Golay codes, a single scan line with two transmit foci is obtained.The computer simulation results using a linear array with a center frequency of 7.5 MHz and 60% 6 dB bandwidth show that the range side-lobe level can be suppressed below −50 dB, when f-number is maintained not smaller than 3. The performance of the proposed scheme for a smaller f-number of 2 was also verified through actual experiments using a 3.85 MHz curved linear array with 60% 6 dB bandwidth. Both the simulation and experimental results show that the proposed method provides improved lateral resolution compared to the conventional pre-compressed and post-compression based coded excitation imaging using Golay codes.  相似文献   

6.
Huang QH  Zheng YP 《Ultrasonics》2008,48(3):182-192

Objectives

This paper aims to apply median filters for reducing interpolation error and improving the quality of 3D images in a freehand 3D ultrasound (US) system.

Background and motivation

Freehand 3D US imaging has been playing an important role in obtaining the entire 3D impression of tissues and organs. Reconstructing a sequence of irregularly located 2D US images (B-scans) into a 3D data set is one of the key procedures for visualization and data analysis.

Methods

In this study, we investigated the feasibility of using median filters for the reconstruction of 3D images in a freehand 3D US system. The B-scans were collected using a 7.5 MHz ultrasound probe. Four algorithms including the standard median (SM), Gaussian weighted median (GWM) and two types of distance-weighted median (DWM) filters were proposed to filter noises and compute voxel intensities. Qualitative and quantitative comparisons were made among the results of different methods based on the image set captured in freehand from the forearm of a healthy subject. A leave-one-out approach was used to demonstrate the performance of the median filters for predicting the removed B-scan pixels.

Results

Compared with the voxel nearest-neighbourhood (VNN) and distance-weighted (DW) interpolation methods, the four median filters reduced the interpolation error by 8.0-24.0% and 1.2-21.8%, respectively, when 1/4 to 5 B-scans was removed from the raw B-scan sequence.

Conclusions

In summary, the median filters can improve the quality of volume reconstruction by reducing the interpolation errors and facilitate the following image analyses in clinical applications.  相似文献   

7.
Estimation of ultrasonic attenuation in a bone using coded excitation   总被引:3,自引:0,他引:3  
This paper describes a novel approach to estimate broadband ultrasound attenuation (BUA) in a bone structure in human in vivo using coded excitation. BUA is an accepted indicator for assessment of osteoporosis. In the tested approach a coded acoustic signal is emitted and then the received echoes are compressed into brief, high amplitude pulses making use of matched filters and correlation receivers. In this way the acoustic peak pressure amplitude probing the tissue can be markedly decreased whereas the average transmitted intensity increases proportionally to the length of the code. This paper examines the properties of three different transmission schemes, based on Barker code, chirp and Golay code. The system designed is capable of generating 16 bits complementary Golay code (CGC), linear frequency modulated (LFM) chirp and 13-bit Barker code (BC) at 0.5 and 1 MHz center frequencies. Both in vivo data acquired from healthy heel bones and in vitro data obtained from human calcaneus were examined and the comparison between the results using coded excitation and two cycles sine burst is presented. It is shown that CGC system allows the effective range of frequencies employed in the measurement of broadband acoustic energy attenuation in the trabecular bone to be doubled in comparison to the standard 0.5 MHz pulse transmission. The algorithm used to calculate the pairs of Golay sequences of the different length, which provide the temporal side-lobe cancellation is also presented. Current efforts are focused on adapting the system developed for operation in pulse-echo mode; this would allow examination and diagnosis of bones with limited access such as hip bone.  相似文献   

8.
Chang JH  Yen JT  Shung KK 《Ultrasonics》2008,48(5):444-452
This paper presents a high-speed digital scan converter (DSC) capable of providing more than 400 images per second, which is necessary to examine the activities of the mouse heart whose rate is 5-10 beats per second. To achieve the desired high-speed performance in cost-effective manner, the DSC developed adopts a linear interpolation algorithm in which two nearest samples to each object pixel of a monitor are selected and only angular interpolation is performed. Through computer simulation with the Field II program, its accuracy was investigated by comparing it to that of bilinear interpolation known as the best algorithm in terms of accuracy and processing speed. The simulation results show that the linear interpolation algorithm is capable of providing an acceptable image quality, which means that the difference of the root mean square error (RMSE) values of the linear and bilinear interpolation algorithms is below 1%, if the sample rate of the envelope samples is at least four times higher than the Nyquist rate for the baseband component of echo signals. The designed DSC was implemented with a single FPGA (Stratix EP1S60F1020C6, Altera Corporation, San Jose, CA) on a DSC board that is a part of a high-speed ultrasound imaging system developed. The temporal and spatial resolutions of the implemented DSC were evaluated by examining its maximum processing time with a time stamp indicating when an image is completely formed and wire phantom testing, respectively. The experimental results show that the implemented DSC is capable of providing images at the rate of 400 images per second with negligible processing error.  相似文献   

9.
The geometry of carotid artery bifurcation is of high clinical interest because it determines the characteristics of blood flow that is closely related to the formation and development of atherosclerotic plaque. However, information on the dynamic changes in the vessel wall of carotid artery bifurcation during a pulsatile cycle is limited. This pilot study investigated the cyclic changes in carotid artery geometry caused by blood flow pulsation in rats. A high-resolution ultrasound imaging system with a broadband scanhead centered at 40 MHz was used to obtain longitudinal images of the rat carotid artery. A high frame rate retrospective B-scan imaging technique based on the use of electrocardiogram to trigger signal acquisition was used to examine precisely the fast arterial wall motion. Two-dimensional geometry data obtained from nine rats showed that the rat carotid artery asymmetrically contracts and dilates during each cardiac cycle. Systolic/diastolic vessel diameters near the upstream and downstream regions from the bifurcation were 0.976 ± 0.011/0.825 ± 0.015 mm and 0.766 ± 0.015/0.650 ± 0.016 mm, respectively. Their posterior/anterior wall displacement ratios in the radial direction were 41.0 ± 14.9% and 2.9 ± 1.6%, respectively. These results indicate that in the vicinity of bifurcation, the carotid artery favorably expands to the anterior side during the systolic phase. This phenomenon was observed to be more prominent in the downstream region near the bifurcation. The cyclic variation pattern in wall movement varies depending on the measurement site, which shows different patterns at far upstream and downstream of the bifurcation. The asymmetric radial expansion and contraction of the rat carotid artery observed in this study may be useful in studying the hemodynamic etiology of cardiovascular diseases because the pulsatile changes in vessel geometry may affect the local hemodynamics that determines the spatial distribution of wall shear stress, one of important cardiovascular risk factors. Further systematic study is needed to clarify the effects of wall elasticity, branch angle and vessel diameter ratio on the asymmetric wall motion of carotid artery bifurcation.  相似文献   

10.
Yanqiu Zhang 《中国物理 B》2021,30(7):78704-078704
The hemispherical phased transducer maximizes the coverage of the skull and the ultrasonic energy per unit area of the skull is minimized, thereby reducing the risk of skull burns, but the transducer has a small focal area adjustment range, increasing the focal length of treatment is an urgent question for this type of transducer. In this paper, a three-dimensional high-intensity focused ultrasound (HIFU) transcranial propagation model is established based on the human head structure. The finite difference time domain (FDTD) is combined with the Westervelt acoustic wave nonlinear propagation equation and Penne's biological heat conduction equation for numerical simulation of the sound pressure field and temperature field. Forming a treatable focal area in a small-opening hemispherical transducer with a small amount of numerical simulation calculation focusing at a set position to determine the minimum partial excitation area ratio of focusing. And then, applying these preliminary results to a large-opening diameter hemispherical transducer and the temperature field formed by it or full excitation is studied. The results show that the focus area with the excitation area ratio of less than 22% moves forward to the transducer side when the excitation sound is formed. When the excitation area ratio is greater than or equal to 23%, it focuses at the set position. In the case of partial incentives, using 23% of the partial array, the adjustable range of the treatable focal area formed in the three-dimensional space is larger than that of the full excitation.  相似文献   

11.
朱维  吴何珍 《声学学报》2017,42(1):67-75
编码激励技术是提高超声穿透能力和分辨率的有效手段。为分析岩石特性对编码信号脉冲压缩性能的影响,通过数值模拟以及不同岩石的超声检测实验,研究并比较了几类编码信号的检测效果。结果表明幅度加权线性调频信号(TLFM)调制的Barker码信号(BTL)受到的信噪比损失低于正弦调制Barker码信号(BS),而分辨率损失要低于TLFM信号。实验结果验证了编码激励技术的有效性,为岩石超声检测中编码参数的设置提供了依据。  相似文献   

12.
Most of the literature on coded excitation describes the signal-to-noise ratio gain of a coded waveform in terms of the time-bandwidth product. We have shown that in the context of ultrasound imaging, the expression for the SNR gain provided by matched filtering a coded waveform, can be reduced to the total number of chips in the transmit signal. Hence, the SNR gain is independent of both the bandwidth and the duration of a single-chip. This concept is described in detail, clarifying this seeming contradiction. The impact of bandwidth and pulse duration on the SNR, SNR gain and axial resolution is described. Bandwidth requirements and the impact of regulatory peak-power limitations are also addressed.  相似文献   

13.
The linear frequency modulated ultrasound excitation thermal wave imaging (LFM-UTWI) was investigated on detection of subsurface defects of metal sheet. A numerical finite element analysis is carried out to calculate thermal wave signal dependence of time by linear frequency modulated ultrasonic wave excitation. Cross-correlation operation in time domain and frequency domain are used to extract the main peak value and the corresponding delay time, respectively. Fourier transform (FT) is applied to calculate the amplitude and phase angle of harmonic component of thermal wave. Experimental results show that various deep subsurface defects are readily detected using LFM-UTWI with once excitation, and LFM-UTWI has an advantage of better defect detectability compared to ultrasound lock-in thermography (ULIT).  相似文献   

14.
We carried out optical selective excitation of individual self-assembled quantum dots by using phase-modulated pulses. Based on scattered photoluminescence excitation resonances in individual QDs, the excitation pulses modulated in the spectral region allows for addressing individual ground states emission. The photoluminescence spectra including several QDs showed intensity changes according to both the modulation energies and phases. The results also suggested the individual control of selective QDs even in collective excitation.  相似文献   

15.
Cowell DM  Freear S 《Ultrasonics》2008,48(2):98-108
A novel switched excitation method for linear frequency modulated excitation of ultrasonic transducers in pulse compression systems is presented that is simple to realise, yet provides reduced signal sidelobes at the output of the matched filter compared to bipolar pseudo-chirp excitation. Pulse compression signal sidelobes are reduced through the use of simple amplitude tapering at the beginning and end of the excitation duration. Amplitude tapering using switched excitation is realised through the use of intermediate voltage switching levels, half that of the main excitation voltages. In total five excitation voltages are used creating a quinary excitation system. The absence of analogue signal generation and power amplifiers renders the excitation method attractive for applications with requirements such as a high channel count or low cost per channel. A systematic study of switched linear frequency modulated excitation methods with simulated and laboratory based experimental verification is presented for 2.25 MHz non-destructive testing immersion transducers. The signal to sidelobe noise level of compressed waveforms generated using quinary and bipolar pseudo-chirp excitation are investigated for transmission through a 0.5 m water and kaolin slurry channel. Quinary linear frequency modulated excitation consistently reduces signal sidelobe power compared to bipolar excitation methods. Experimental results for transmission between two 2.25 MHz transducers separated by a 0.5 m channel of water and 5% kaolin suspension shows improvements in signal to sidelobe noise power in the order of 7–8 dB. The reported quinary switched method for linear frequency modulated excitation provides improved performance compared to pseudo-chirp excitation without the need for high performance excitation amplifiers.  相似文献   

16.
 研究了4f结构的飞秒脉冲时空变换整形装置在各元件间距不等的情况下对脉冲输出特性的影响,理论分析了间距失调效应对等间距和不等间距达曼光栅滤波器的脉冲输出特性的影响。结果表明4f结构间距失调后无论是能量还是平均度都不如等间距高,中心脉冲能量变小,其它级次脉冲生出更多旁瓣;失调量越小,输出的脉冲质量越高,对于f为12 cm的装置,当失调量小于1 cm时,对输出脉冲影响较小。  相似文献   

17.
利用脉宽调制技术,设计了一台为高功率微波源提供导引磁场的脉宽调制型励磁电源,它可在励磁线圈中产生一定持续时间的准稳态强磁场。励磁电源的储能部分采用容量15 F、最高充电电压800 V的储能密度较高的超级电容器,最大储能为4.8 MJ,内阻小于0.25 Ω。在储能电容充电645 V的情况下,对电感约为60 mH、电阻约0.40 Ω的励磁线圈进行了励磁实验,获得了持续时间为1.9 s、幅值为900 A准稳态电流,电流波动幅度为5%,对应线圈中的最大轴向磁场为2.2 T。实验结果与理论计算基本一致,表明所研制的励磁电源达到了设计要求。  相似文献   

18.
19.
龚燕君  章东  郗晓宇  龚秀芬  刘政 《物理学报》2007,56(12):7051-7057
超声造影剂的次谐波成像可以提高造影组织比,提供更好的图像质量. 提出一种利用调频脉冲激励以增强造影剂微气泡产生的次谐波新方法. 基于修正的Church方程,从理论上讨论了次谐波的产生与调频激励声压的关系及产生阈值,并且实验证实了优化调频信号的带宽及调频时间可以提高次谐波信号幅度及改善主瓣和旁瓣特性. 理论与实验表明,与传统脉冲信号激励相比,调频信号激励产生的次谐波幅度可提高约22dB. 关键词: 调频激励 超声造影剂 微气泡 次谐波  相似文献   

20.
Shen CC  Su SY  Cheng CH  Yeh CK 《Ultrasonics》2012,52(1):25-32

Objective

The goal of this work is to examine the effects of pulse-inversion (PI) technique in combination with dual-frequency (DF) excitation method to separate the high-order nonlinear responses from microbubble contrast agents for improvement of image contrast. DF excitation method has been previously developed to induce the low-frequency ultrasound nonlinear responses from bubbles by using the composition of two high-frequency sinusoids (f1 and f2).

Motivation

Although the simple filtering was conventionally utilized to provide signal separation, the PI approach is better in the sense that it minimizes the mutual interferences among these high-order nonlinear responses in the presence of spectral overlap. The novelty of the work is that, in addition to the common PI summation, the PI subtraction was also applied in DF excitation method.

Methods

DF excitation pulses having an envelope frequency of 3 MHz (i.e., f1 = 8.5 MHz and f2 = 11.5 MHz) with pulse lengths of 3-10 μs and the pressure amplitudes from 0.5 to 1.5 MPa were used to interrogate the nonlinear responses of SonoVue™ microbubbles in the phantom experiments. The high-order nonlinear responses in the DF excitation were extracted for contrast imaging using PI summation for even-order nonlinear components or PI subtraction for odd-order nonlinear ones.

Results

Our results indicated that, as compared to the conventional filtering technique, the PI processing effectively increases the contrast-to-tissue ratio (CTR) of the third-order nonlinear response at 5.5 MHz and the fourth-order nonlinear response at 6 MHz by 2-5 dB. For these high-order nonlinear components, the CTR increase varies with the transmission pressures from 0.5 to 1.5 MPa due to the microbubbles’ displacement induced by the radiation force of DF excitation.

Conclusions

For DF excitation technique, the PI processing can help to extract either the odd-order or the even-order nonlinear components for higher CTR estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号