首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The electron ionization fragmentation patterns of 5-methyl-3-(o-, m- and p-tolyl)-1,2,4-oxadiazoles (1a—c) have been examined by metastable ion and high resolution mass spectrometry. The o-tolyl isomer loses CO and C2H2O from the metastable molecular ion whereas the m- and p-tolyl isomers lose only CH3CN thus indicating a strong ortho effect in directing the fragmentation in 1a. Slight differences between o-, m- and p-tolyl isomers in the collisional activation fragmentation of stable [C7H6N]+ ions suggest that structural differences exist even after a series of extensive rearrangements of the molecular ions. Metastable ion kinetic energy (MIKE) and collisional activation (CA) spectra were very helpful in providing valuable information about many fragments.  相似文献   

2.
The molecular ions of N,N-dimethylthiobenzamide and its ortho substituted derivatives (substituents CH3, Cl, Br, I) lose a hydrogen atom and/or the ortho substituent. The mechanism of this process has been studied by measurements of the ionization energies, appearance energies of the product ions m/z 164 and the kinetic energy release during this process. The structure of the product ions m/z 164 and relevant reference ions have been investigated by mass analysed ion kinetic energy spectra, B/E linked scan spectra and collision induced decompositions. The results show clearly the formation of two different kinds of product ions m/z 164 depending on the substituent lost. Type a ions are formed by loss of a H atom or the CH3 substituent and correspond to protonated 3,4-benzo-N-methylpyroline-2-thione. The formation of these ions occurs by a hydrogen rearrangement followed by an intramolecular substitution via a 5-membered cyclic intermediate and is associated with a large release of kinetic energy. In contrast, the loss of the halogeno substituents to give type b ions probably occurs via a direct displacement reaction by the sulfur atom of the thioamide group giving rise to Gaussian shaped peaks mass analysed ion kinetic energy spectra.  相似文献   

3.
Collisional activation mass spectra confirm that tolyl ions can be produced from a variety of CH3C6H4Y compounds. High purity o-, m- and p-tolyl ions are prepared by chemical ionization of the corresponding fluorides (Y=F) as proposed by Harrison. In electron ionization of CH3C6H4Y formation of the more stable tropylium and benzyl ionic isomers usually accompanies that of the o-, m- and p-tolyl ions. Isomerization of low energy [CH3C6H4Y]+? to [Y–methylenecyclohexadiene]+? is proposed to account for most [benzyl]+ formation, while the tropylium ion appears to arise from the isomerization of tolyl ions formed with higher internal energies, [o-, m-, p-tolyl]+→ [benzyl]+→ [tropylium]+, consistent with Dewar's predictions from MINDO/3 calculations.  相似文献   

4.
The structures of the [M? OH]+ ions of m- and pethylnitrobenzene have been compared by measurements of metastable ion spectra, collisional activation spectra, kinetic energy releases and critical energies for the formation of these ions and their subsequent decomposition. Normalized rates of fragmentation of metastable molecular ions and metastable [M? OH]+ ions have been compared for ion lifetimes up to 30 μs. The energy measurements fail to distinguish between the structures of the [M? OH]+ ions, but the normalized fragmentation rates and the collisional activation spectra show their structures to be different.  相似文献   

5.
Ions ap and am corresponding to protonated p- and m-methoxymethylbenzaldehydes have been generated in a mass spectrometer by electron impact fragmentation of the correspondingly substituted 1-phenylethanols (1 and 2). Metastable ions ap and am (2nd FFR of a VG-ZAB-2F mass spectrometer) react by elimination of CH3OH, loss of HCOOCH3, formation of ions CH2=OCH3 and to a small extent by loss of CH2O and CH3OCH3, respectively. The mechanisms of these reactions have been studied by extensive D-labelling, and it is shown that these fragmentations are initiated by a transfer of the proton located originally at the carbonyl group onto the aromatic ring. The formation of ions \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_2 = \mathop {{\rm OCH}_3 }\limits^ + $\end{document} and the loss of CH3OH occurs via π-and σ-complexes. The elimination of HCOOCH3 from ions ap and am corresponds to a functional group interaction between distal side chains and occurs via intermediate ion/molecule complexes formed by a protolytic cleavage of the formyl group. The loss of CH2O and CH3OCH3 proceeds also by intermediate ion/molecule complexes which are generated by a protolytic cleavage of the methoxymethyl side chain in ions ap and am.  相似文献   

6.
From deuterium labelling experiments it was concluded that metastable molecular ions of ethyl methyl sulfide lose a methyl radical with the formation of both [CH3S?CH2]+ amd [CH3CH?SH]+˙ The fragmentation reactions of metastable ions generated with these structure are losses of C2H2, H2S and CH4. These reactoins and the preceding isomerizations have also been studied by means of deuterium labelling. From the results it is concluded that the three fragmentation reactions most probably occur from ions with a C? C? S skeleton. Appearance energy measurements for ions generated with the two structures above and all give rise to the same ΔHf value for these three isomeric forms. Ab initio molecular orbitals calculations confirm that these three ions fortuitously have very similar heats of formation. A potential energy diagram rationalizing the isomerizations and the principal fragmentation reaction is presented.  相似文献   

7.
The fragmentation of the dimethyl and diethyl esters of maleic and fumaric acids have been studied as a function of the internal energy of the molecular ions using charge exchange techniques and metastable ion studies in combination with isotopic labelling. The dimethyl ester molecular ions show distinctive behaviours at both low and high internal energies, indicating that interconversion of the molecular ions does not occur. The fumarate molecular ion fragments by elimination of CH2O and (CO2 + CH3) in the metastable ion time-frame, while the maleate ester fragments primarily by loss of CH3O. At higher internal energies both molecular ions fragment primarily by loss of CH3O but the fragment ion from the maleate ester shows a greater stability, presumably because it assumes the cyclic cationated maleic anhydride structure. The diethyl maleate and diethyl fumarate molecular ions show identical metastable ion characteristics; in addition the [COS]+· charge exchange mass spectra are very similar. These results indicate that low-energy molecular ions interconvert. At higher internal energies interconversion does not occur, and, although both moiecular ions fragment by loss of C2H5O, the resultsint fragment ions show different stabilities and fragmentation reactions.  相似文献   

8.
Ab initio SCF and SCF -CI calculations have been performed to investigate substituent effects on ground- and excited-state properties of 4-R-pyrimidines, and to compare these with substituent effects in 2- and 4-R-pyridines, with R including the π donating and σ withdrawing groups CH3, NH2, OH, F, and C2H3 and the σ and π electron-withdrawing groups CHO and CN. Substitution leads to significant changes in the internal angles of the pyrimidine ring, which are independent of the nature of the substituent. The geometry of the pyrimidine ring is more sensitive to substitution in the 4 position than the pyridine ring geometry is to substitution in either the 2 or the 4 position. The isodesmic reaction energies for substituent transfer from the 4 position of pyrimidine to the 2 or 4 position of pyridine indicate that all R groups except CN have a relative stabilizing effect in pyrimidine. The presence of a π donating group leads to an increase in the n→π* transition energy of 4-R-pyrimidines, while the π withdrawing group CN leads to a decrease in the transition energy relative to pyrimidine. Orbital energy differences and virtual excitation energies tend to correlate with n→π* transition energies of 4-R-pyrimidines with saturated R groups, but such correlations are masked by π conjugation, n orbital interaction, and configurational mixing when the unsaturated groups C2H3, CHO, and CN are present. The electronic effects of a π donating group are stronger when the group is bonded to pyrimidine than to pyridine, but those of a π withdrawing group are weaker when the group is bonded to pyrimidine.  相似文献   

9.
Loss of CO from the molecular ions ([CH3OC6H4COF]+˙) of o-, m- and p-anisoyl fluorides has been investigated by mass-analysed ion kinetic energy (MIKE) spectrometry. This reaction involves fluorine atom migration from the carbonyl group to the benzene ring. In the cases of o- and p-anisoyl fluorides, the fluorine atom migrates via a three-membered transition state to form the molecular ions ([CH3OC6H4F]+˙) of o- and p-fluoroanisoles, respectively. On the other hand, in the case of m-anisoyl fluoride, the fluorine atom migrates from the carbonyl group to the benzene ring via a three- or four-membered transition state.  相似文献   

10.
The 13C NMR chemical shifts of m- and p-substituted benzyl N,N-dimethylcarbamates were measured in CDCl3. The meta and para 13C substituent chemical shifts were analysed by means of dual substituent parameter (DSP) equations. Good correlations were obtained, especially for the para-carbon substituent chemical shifts. The computed transmission coefficients, ρI and ρR, are consistent with the general features of the fitting parameters. It has been shown that no significant electron demand is imposed by the ? CH2OCON(CH3)2 substituent.  相似文献   

11.
The [M] → [M ? CH3] reaction in a series of m- and p-X substituted ethylbenzenes has been studied by wide range electron energy kinetics and metastable ion characteristics techniques. By this approach, qualitative measures of activation evergy differences between [XC6H4CH2]+ ions derived from m- and p-X isomer substrates have been secured, for both their formation and further decomposition. These evergy differences are consistent with (but do not prove) ion structures that have been suggested by previous work in this area, involving the use of isotope labeling, and ionization and appearance potential methods.  相似文献   

12.
Ab initiocalculations with full geometry optimization were performed for methylhydrosilanes R2HSiCH3, dimethylsilanes C2Si(CH3)2, and silenes R2Si = CH2 (R = H, CH3, SiH3, CH3O, NH2, Cl, F). The enthalpies of dehydrogenation methylhydrosilanes into silenes and of dehydrocondesation of methylhydrosilanes into dimethylsilanes were calculated. The enthalpies of dehydrogenation and dehydrocondensation increase with the electronegativity of substituent R. The Si-C and Si = C bond energies were calculated. As the electronegativity of the substituent increases, the Si-C bond shortens and strengthens, while the Si = C bond shortens and weakens.  相似文献   

13.
The 13C NMR spectra of several 2-substituted imidazoles and benzimidazoles have been measured. The substituent was CH3, COOH and CONHR, where R = H, n-Bu, p-tolyl or m-chlorophenyl. Carbons 4 and 5 in the imidazoles and the carbon pairs 8/9, 4/7 and 5/6 become equivalent by proton transfer from N-1 to N-3, possibly through intermolecular association. The rate of this proton exchange increases with concentration and temperature. It decreases with extension of the 2-substituent (rate CH3?CONH-phenyl > CONH-p-tolyl ? CONH-m-chlorophenyl ? CONH-n-butyl) due to steric hindrance at the site of the (benz)imidazole nitrogen.  相似文献   

14.
The loss of ortho substituents (CH3, Cl, Br, I) from molecular ions of substituted thiobenzamides has been investigated by determination of the critical energy and kinetic energy released during this process to obtain some further insight into the corresponding reaction of N,N-dimethylthiobenzamide ions. In contrast to the latter compounds the ortho methyl substituent is not eliminated from the molecular ions of o-methylthiobenzamide, but the loss of ortho halogeno substituents occurs with identical reaction characteristics in both series of compounds. It is concluded that the loss of halogeno substituents from molecular ions in both series corresponds to a direct substitution reaction via a 4-membered transition state.  相似文献   

15.
The mass spectra of some (Z)α-(4-R′-phenyl)-β-(2-thienyl-5-R)acrylonitriles (R = H, CH3, Br; R′ = H, CH3O, CH3, Cl, NO2) at 70 eV are reported. Mass spectra exhibit pronounced molecular ions. The compound's where R = H, and CH3 are characterized by the occurrence of a strong [M - H]+ peak. Moreover, in all the compounds a m/z 177 peak occurs. In the compounds where R = H, [M - HS]* and [M - CHS]* ions are present except the nitroderivatives. Where R = CH3, [M - HS]+ ion occurs.  相似文献   

16.
Several 1-X-sabstitirted-3-methoxy-4-trideuteromethoxybenzens were synthesized and their electron impact ionization mass spectra were measured with an ionizing energy of 20 eV. From the peak intensity ratio of [M ? CD3 ] and [M ? CH3] the fragmentation-directing ability of the substituent X was evaluated. The most powerful group was found to be NH2, which expelled a methoxy methyl group only from its para position. The CH3 group and four halogen atoms, F, Cl, Br and I, exerted a moderate effect Electron-withdrawing groups such as NO2, CHO and CN had only a little influence on the fragmentation selectivity. These results were interpreted in terms of the effect of X on the distribution of both the unpaired electron and the positive charge in the molecular ion.  相似文献   

17.
The 70 eV electron ionization mass spectra of polycyclic aromatic compounds are characterized by the presence of relatively stable multiply charged molecular ions [M]n+ (n=2–4). When generated from the compounds benzene, napthalene, anthracene, phenanthrene, 2,3-benzanthracene, 1,2-benzanthracene, chrysene, 9,10-benzophenanthrene and pyrene, the relative abundances of the multiply charged ions increase dramatically with the number of rings. These compounds form multiply charged molecular ions (n=2, 3) which undergo unimolecular decompositions indicative of considerable ionic rearrangement. The main charge separation processes observed here [M]2+→m1++m2+, [M]3+˙→m3++m→+m42+) involve, in almost every case, one or more of the products [CH3]+, [C2H3]+˙ and [C3H3]+. This suggests the existence of preferred structures amongst the metastable parent ions. Information on the relative importance of the various fragmentation pathways is presented here along with translational energy release data. Some tentative structural information about the metastable ions has been inferred from the translational energy release on the assumption that the released energy is due primarily to coulombic repulsion within the transition state structure. For the triply charged ions these interpretations have necessitated the use of a coulombic repulsion model which takes account of an extra charge. Vertical ionization energies for the process [M]n++G→[M](n+1)+G+e? (charge stripping) have also been determined where possible for n=1 and 2 and the results from these experiments allow the derivation of simple empirical equations which relate successive ionization energies for the formation of [M]2+ and [M]3+˙ to the appearance energy of [M]+˙.  相似文献   

18.
All the metastable transitions observed above m/z 39 in the first field-free region were compared for the three positional isomers of dimethoxybenzene. The observed isomer-dependent fragmentation processes, in particular the formation and decomposition of the m/z 95 (C6H7O)+ ion, are discussed in terms of two competing fragmentations [elimination of CH3 and CHnO (n = 1–3) and formation of methoxycyclopentadienyl and protonated phenol ions] and the relative energies of several isomers of the C6H7O+ ion calculated with molecular orbital theory.  相似文献   

19.
Based on the quasi-equilibrium theory of mass spectra it is shown that the intensity ratio [A]+/[M]+, where [A]+ is a fragment ion and [M]+ is the molecular ion, is given by [A]+/[M]+ = f′ (k1/kt) ((1/f) ? 1), where f is the fraction of molecular ions with insufficient energy to fragment, f′ is the fraction of [A]+ ions with insufficient energy to fragment, and k1/kt is the fraction of fragmenting molecular ions which form [A]+. For substituted acetophenones it is shown that f depends on the substituent present and that f′ k1/kt is also substituent dependent for formation of both [CH3CO]+ and [YC6H4CO]+. It is also shown that no direct information concerning the effect of a substituent on the rate of a particular fragmentation reaction can be obtained from intensity studies. The ionization potentials of the parent molecules and the appearance potentials of the [YC6H4CO]+ fragment ions have been measured for fifteen substituted acetophenones and the correlations with substituent constants are discussed.  相似文献   

20.
The EI induced fragmentation pathways of 4,5-bis(dimethylamino)fluorene, 4-(d6-dimethylamino)-5-(dimethylamino)fluorene, 4,5-bis(d6-dimethylamino)fluorene, 4-(dimethylamino)-5-methylaminofluorene, 4,5-bis-(methylamino)fluorene, 4-amino-5-methylaminofluorene, 1,8-bis(dimethylamino)naphthalene, 1,8-bis(d6-dimethyl-amino)-naphthalene and 1,8-bis(dimethylamino)-2,7-dimethoxynaphthalene were investigated. A mechanism is pro-posed for the surprising elimination of CH3? NH2 from the molecular ion, followed by loss of C2H5·, C2H4 and CH3CN and for the accompanying cyclizations to stable heterocyclic ions: prior to fragmentation the molecular radical ion rearranges to new, distonic radical ions by reciprocal H and CH3 transfers between the adjacent dimethylamino groups. Each of these new, isomeric molecular ions decomposes subsequently in a characteristic way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号