首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Easily accessible 1,6-anhydro-2,3-O-(S)-benzylidene-β-D-mannopyranose was converted in four steps to 1,6-anhydro-3,4-di-O-benzyl-β-D-talopyranose. Glycosylation of the latter with ethyl 2,3,4-tri-O-acetyl-1-thio-α-L-rhamnopyranoside gave, after further processing, 1-O-allyl-3,4-di-O-benzyl-2-O-(2,3,4-tri-O-benzyl-α-L-rhamnopyranosyl)-L-ribitol.  相似文献   

2.
A new approach to the total, asymmetric synthesis of D -threo-L -talo-octose ((?)- 1 ) and its derivatives is presented. It is based on the chemoselective Wittig-Horner monoolefination of a 5-deoxy-D -ribo-hexodialdose derivative 4 obtained by selective reduction of (?)-5-deoxy-2.3-O-isopropylidene-/β-D -ribo-hexofuranurono-6,1-lactone ((?)- 3 ). Allylic bromination of the resulting methyl (E)-oct-6-enofuranuronate (+)- 5 followed by intramolecular nucleophilic displacement of the so-obtained bromides gave a 13.3:1 mixture of (?)-methyl (E)-l,4-anhydro-6,7-dideoxy-2,3-O-isopropylidene-β-L -talo-oct-6-enopyranuronate ((?)- 8 ) and methyl (E)-l,4-anhydro-6,7-dideoxy-2,3-O-isopropylidene-α-D -allo-oct-6-enopyranuronate ( 9 ). The double hydroxylation of the enoate (?)- 8 followed Kishi's rule and gave the corresponding D -threo-β-L -talo-octopyranuronate derivative (?)- 11 with a good diastereoselectivity. Reduction of ester (?)- 11 and deprotection led to pure (?)- 1 .  相似文献   

3.
The synthesis of 7,8-dihydroxy-2-(2-methoxycarbonylethyl)-4,9-dioxa-2-azabicyclo[4.2.1]nonane- 3-thione ( 16 ) and of its parents 9-oxa-4-thia-3-thione 17 , and 9-oxa-4-thia-3-one 18 is described. The conversion of 5′-deoxy-5′-iodo-2′,3′-O, O-isopropylidene-5,6-dihydrouridin ( 1 ) into the 2-O-methyl-5,6-dihydrouridine 5 , the 5′-O-acetyl-5,6-dihydrouridine 4 , and into the N-(5-O-acetyl-2,3-O, O-isopropylidene-β-D -ribofuranosyl)-N-(2-methoxycarbonyl thyl)-urea ( 6 ) invoked 2′,3′-O, O-isopropylidene-2,5′-anhydro-5,6-dihydrouridine ( 2 ) as the common intermediate.  相似文献   

4.
The 1H- and 13C-NMR data of the dimeric anhydride 1 of 2,3-O-isopropylidene-β-D -ribofuranose are reported together with the 1H-NOE values. The data show that the products of the polymerization of 1,5-anhydro-2,3-O-isopropylidene-β-D -ribofuranose are α- and β-D -ribofuranans and not an α-D -ribofuranan and a β-D -ribofuranan and a β D ribo-pyranan as claimed before [2] [3].  相似文献   

5.
Abstract

The synthesis is reported of 3-aminopropyl 3-O-[4-O(β-L-rhamnopyranosyl)-β-D-glucopyranosyl]-α-L-rhamnopyranoside (34), 3-aminopropyl 2-acetamido-3-O-[4-0-(β-L-rhamnopyranosyl)-β-D-glucopyranosyl]-2-deoxy-β-D-galactopyranoside (37), 3-aminopropyl 3-O-[4-O-(β-L-rhamnopyranosyl)-α-D-glucopyranosyl]-α-D-galactofuranoside (41), and 3-aminopropyl 4-O-[4-O-(β-L-rhamnopyranosyl)-β-D-glucopyranosyl]-β-D-galactopyranoside (45). These are spacer-containing fragments of the capsular polysaccharides of Streptococcus pneumoniae type 2, 7F, 22F, and 23F, respectively, which are constituents of Pneumovax© 23. 2,3,4-Tri-O-benzyl-α-L-rhamnopyranosyl bromide was coupled to l,6-anhydro-2,3-di-(O-benzyl-β-D-glucopyranose (3). Opening of the anhydro ring, removal of AcO-1, and imidation of l,6-anhydro-2,3-di- O-benzyl-4-O-(2,3,4-tri-O-benzyl-β-L-rhamnopyranosyl)-β-D-glucopyranose (4β) afforded 6-O-acetyl-2,3-di-O-ben-zyl-4-O-(2,3,4-tri- O-benzyl-β-L-rhamnopyranosyl)-αβ-D-glucopyranosyl trichloroacet-imidate (7αβ). Condensation of 7αβ with 3-N-benzyloxycarbonylaminopropyl 2-O-ben-zyl-5,6-O-isopropylidene-α-D-galactofuranoside (26), followed by deprotection gave 41 Opening of the anhydro ring of 4 p followed by debenzylation, acerylauon, removal of AcO-1, and imidation yielded 2,3,6-tri-(9-aceryl-4-O-(2,3,4-tri-0-acetyl-P-L-rharnnopyran-.-osyl)-α-D-glucopyranosyl trichloroacetimidate (11). Condensation of 11 with 3-N-bcn-zyloxycarbonylaminopropyl 2,4-di-O-benzyl-α-L-rhamnopyranoside (18), with 3-N-bcn-zyloxycarbonylaminopropyl 2-acetamido-4,6-O-benzylidene-2-deoxy-β-D-galactopyran-oside (21), or with 3-N -benzyloxycarbonylaminopropyl 2-O-acetyl-3-O-allyl-6-O-benzyl-β-D-galactopyranoside (31), followed by deprotection afforded 34, 37, and 45, respectively.  相似文献   

6.
The synthesis of C-glycosidic analogues 15–22 of N4-(2-acetamido-2-deoxy-β-D -glucopyranosyl)-L -asparagine (Asn(N4GlcNAc)) possessing a reversed amide bond as an isosteric replacement of the N-glycosidic linkage is presented. The peptide cyclo(-D -Pro-Phe-Ala-CGaa-Phe-Phe-) (CGaa = C-glycosylated amino acid; 24 ) was prepared to demonstrate that 3-[(3-acetamido-2,6-anhydro-4,5,7-tri-O-benzyl-3-deoxy-β-D -glycero-D -guloheptonoyl)amino]-2-[(9H-fluoren-9-yloxycarbonyl)amino]propanoic acid ( 22 ) can be used in solid-phase peptide synthesis. The conformation of 24 was determined by NMR and molecular-dynamics (MD) techniques. Evidence is provided that the CGaa side chain interacts with the peptide backbone. The different C-glycosylated amino acids 15–21 were prepared by coupling 3-acetamido-2,6-anhydro-4,5,7-tri-O-benzyl-3-deoxy-β-D -glycero-D -gulo-heptonic acid ( 4 ) with diamino-acid derivatives 8–14 in 83–96% yield. The synthesis of 4 was performed from 2-(acetamido-3,4,6-tri-O-benzyl-2-deoxy-β-D -glucopyranosyl) tributylstannane ( 2 ) by treatment with BuLi and CO2 in 83% yield. Similarly, propyl isocyanat yielded the glycoheptonamide 7 in 52% from 2 . Compound 2 was obtained from 2-acetamido-3,4,6-tri-O-benzyl-2-deoxy-D -glucopyranose ( 1 ) by chlorination and addition of tributyltinlithium in 74% yield. A procedure for a multigram-scale synthesis of 1 is given.  相似文献   

7.
6-Amino-1-(β-D-ribofuranosyl)-1H-pyrazolo[3,4-d]-1,3-oxazin-4-one ( 4 ), an isostere of the nucleoside antibiotic oxanosine has been synthesized from ethyl 5-amino-1-(2,3-O-isopropylidene-β-D-ribofuranosyl)pyrazole-4-carboxylate ( 6 ). Treatment of 6 with ethoxycarbonyl isothiocyanate in acetone gave the 5-thioureido derivative 7 , which on methylation with methyl iodide afforded ethyl 1-(2,3-O-isopropylidene-β-D-ribofuranosyl)-5-[(N'-ethoxycarbonyl-S-methylisothiocarbamoyl)amino]pyrazole-4-carboxylate ( 8 ). Ring closure of 8 under alkaline media furnished 6-amino-1-(2,3-O-isopropylidene-β-D-ribofuranosyl)-1H-pyrazolo[3,4-d]-1,3-oxazin-4-one ( 10 ), which on deisopropylidenation afforded 4 in good yield. 6-Amino-1-(β-D-ribofuranosyl)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one ( 5 ) has also been synthesized from the AICA riboside congener 5-amino-1-(2,3-O-isopropylidene-β-D-ribofuranosyl)pyrazole-4-carboxamide ( 12 ). Treatment of 12 with benzoyl isothiocyanate, and subsequent methylation of the reaction product with methyl iodide gave 1-(2,3-O-isopropylidene-β-D-ribofuranosyl)-5-[(N'-benzoyl-S-methylisothiocarbamoyl)amino]pyrazole-4-carboxamide ( 15 ). Base mediated cyclization of 15 gave 6-amino-1-(2,3-O-isopropylidene-β-D-ribofuranosyl)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one ( 14 ). Deisopropylidenation of 14 with aqueous trifluoroacetic acid afforded 5 in good yield. Compound 4 was devoid of any significant antiviral or antitumor activity in culture.  相似文献   

8.
Synthesis and cationic ring-opening polymerization of new 1,6-anhydro-β-lactose derivatives such as hexa-O-methylated (LSHME), tert-butyldimethylsilylated (LSHSE), and benzylated 1,6-anhydro-β-lactoses (LSHBE) were first investigated. The disaccharide monomers were prepared by methylation, tert-butyldimethylsilylation, and benzylation of 1,6-anhydro-β-lactose, respectively. It was found that LSHME was readily polymerized with such Lewis acid catalysts as PF5 and SbCl5 to give stereoregular 2,3-di-O-methyl-4-O-(2′,3′,4′,6′-tetra-O-methyl-β-D -galactopyranosyl)-(1→6)-β-D -glucopyranans which are comb-shaped polysaccharide derivatives. However, LSHSE and LSHBE had almost no polymerizability. It was revealed that the ring-opening polymerizability of the anhydrodisaccharide monomers was influenced by the steric hindrance of the hydroxyl-protective groups. Ring-opening copolymerization of LSHME with 1,6-anhydro-2,3,4-tri-O-benzyl-β-D -glucopyranose (LGTBE) in various ratios of monomer feeds was also examined to afford the corresponding copolymers. Structural analyses of the monomers and polymers were carried out by means of high resolution nuclear magnetic resonance spectroscopy.  相似文献   

9.
Methyl 5-amino-5-deoxy-2,3-O-isopropylidene-β-D-ribofuranoside (III) has been synthesized and used as an intermediate in the preparation of the kinetin analog, methyl 5-deoxy-5-(purin-6-yl)amino-β-D-ribofuranoside (X). The related 1-substituted adenine, methyl 5- (6-aminopurin-1-yl)-5-deoxy-2,3-O-isopropylidene-β-D-ribofuranoside (XIII), was prepared by cyclization of 1-benzyl-5-cyano-4-ethoxymethyleneaminoimidazole (XI) with III and subsequent debenzylation with sodium in liquid ammonia. The structures and stereochemistry of these compounds were established by a combination of ultraviolet and nuclear magnetic resonance spectroscopy.  相似文献   

10.
A new process suitable for large scale synthesis of the antitumor-antiviral agent, 2-β-D-ribofuranosyl-4-selenazolecarboxamide (selenazofurin, 1 ), has been developed. Thus, 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose ( 3 ) was converted with cyanotrimethylsilane and stannic chloride to the crystalline 2,5-anhydro-3,4,6-tri-O-benzoyl-β-D-allononitrile ( 4 ) without chromatography. Cyanosugar 4 in ethanol was treated with hydrogen selenide gas to afford stereospecifically the unstable 2,5-anhydro-3,4,6-tri-O-benzoyl-β-D-allonoselenoamide ( 5 ) which was converted in situ by ethyl bromopyruvate to the stable ethyl 2-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-4-selenazolecarboxylate ( 6). Selenazole ethyl ester 6 was deprotected with sodium methoxide affording methyl 2-β-D-ribofuranosyl-4-selenazolecarboxylate ( 7 ) which was aminated with ammonia to provide selenazofurin ( 1 ) or with other amines to provide N-substituted selenazofurin amides.  相似文献   

11.
The successful removal of the isopropylidene-protecting group from 1,4-anhydro-2,3-O-isopropylidene-5-O-tosyl-D,L-ribitol and from quaternary N-(1,4-anhydro-5-deoxy-2,3-O-isopropylidene-D,L-ribitol-5-yl)ammonium salts is reported. The structures of all isolates were determined by spectral analysis, including extensive 2-D NMR analyses. Single-crystal x-ray diffractions of 1,4-anhydro-5-O-tosyl-D,L-ribitol and its 2,3-O-isopropylidene derivatives are reported.  相似文献   

12.
A number of pyrazole ribonucleosides, structurally related to AICA riboside and ribavirin have been prepared and evaluated for their biological activity in vitro. Deisopropylidenation of 5-amino-1-(2,3-O-isopropylidene-β-D-ribofuranosyl)pyrazole-4-carbonitrile ( 6 ) with aqueous trifluoroacetic acid gave 5-amino-1-(β-D-ribofuranosyl)pyrazole-4-carbonitrile ( 7 ). Conventional transformation of the carbonitrile function of 7 gave the AICA riboside congener ( 2 ) and related 5-amino-1-(β-D-ribofuranosyl)-pyrazoles ( 8–10 ). Acetylation of 7 at low temperature gave the versatile intermediate 5-amino-1-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)pyrazole-4-carbonitrile ( 15 ). Non-aqueous diazotization of 15 with isoamylnitrite in dibromomethane or diiodomethane gave the corresponding C5-bromo 13 and C5-iodo 16 derivatives. Compounds 13 and 16 were subsequently transformed into 5-bromo-1-(β-D-ribofuranosyl)pyrazole-4-carboxamide ( 11 ) and the 5-iodo analog 25 . However, a similar nonaqueous diazotization of 15 in dichloromethane afforded the deaminated product 1-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)pyrazole-4-carbonitrile ( 22 ). Treatment of 22 with ammonium hydroxide/hydrogen peroxide gave the ribavirin congener 1-(β-D-ribofuranosyl)pyrazole-4-carboxamide ( 18 ). Similar treatment of 22 with hydrogen sulfide in pyridine or hydroxylamine in ethanol gave the 4-thiocarboxamide 19 and 4-carboxamidoxime 20 derivatives, respectively. Catalytic hydrogenation of 20 afforded 1[β-D-ribofuranosyl)pyrazole-4-carboxamidine ( 21 ). These pyrazole nucleosides are devoid of any significant antiviral or antitumor activity in vitro.  相似文献   

13.
Abstract

The optically pure Diels-Alder adduct of furan to 1-cyanovinyl (1R)-camphanate was converted to methyl(methyl 5-bromo-5-deoxy-2,3-O-isopropylidene-β-l-allo-hexo-furanosid)uronate. Ester reduction, followed by HBr elimination afforded (+)-methyl 5,6-anhydro-2,3-O-isopropylidene-d-β-talo-hexofuranoside. Applying the method of Adley and Owen, (+)-methyl 5,6-dideoxy-5,6-epithio-2,3-O-isopropylidene-l-β-allo-hexofuranoside was obtained and acetolysed to give, after deprotection, (-)-5-deoxy-5-thio-l-allose.  相似文献   

14.
ABSTRACT

The four derivatives of β-maltosyl-(1→4)-trehalose have been synthesized, which are monodeoxygenated at the site of one of the primary hydroxyl groups. The tetrasaccharides were constructed in [2+2] block syntheses. Thus, 6′″-deoxy-β-maltosyl-(1→4)-trehalose was prepared by selective iodination of allyl 2,3,6,2′,3′-penta-O-acetyl-β-maltoside (3) followed by catalytic hydrogenolysis and coupling with 2,3-di-O-benzyl-4,6-O-benzylidene-α-D-glucopyranosyl 2′,3′,6′-tri-O-benzyl-α-D-glucopyranoside (9), and 6″-deoxy-β-maltosyl-(1→4)-trehalose by selective iodination of allyl 4′,6′-O-isopropylidene-β-maltoside (14), coupling with 9, and one-step hydrogenolysis at the tetrasaccharide level. For the synthesis of 6′-deoxy-β-maltosyl-(1→4)-trehalose, the diol 2,3-di-O-benzyl-4,6-O-benzylidene-α-D-glucopyranosyl 2′,3′-di-O-benzyl-α-D-glucopyranoside (22) was selectively iodinated and glycosylated with acetobromomaltose followed by catalytic hydrogenolysis. The 6-deoxy-β-maltosyl-(1→4)-trehalose was obtained upon selective iodination of a tetrasaccharide diol.  相似文献   

15.
The tricyclic nucleoside 8-amino-4-methylthio-6-methyl-2-(β-D-ribofuranosyl)-1,2,3,5,6,7-hexaazaacenaphthylene ( 3 ) was synthesized from 3-cyano-4,6-bis(methylthio)-1-(β-D-ribofuranosyl)pyrazolo[3,4-d]pyrimidine ( 1 ). Attempts to synthesize 8-amino-6-methyl-2-(β-D-ribofuranosyl)-1H-2,6-dihydro-1,2,3,5,6,7-hexaazaacenaphthylene ( 5 ) ([an aza analog of 6-amino-4-methyl-8-(β-D-ribofuranosyl)-1,3,4,5,8-pentaazaacenaphthylene (TCN)], which is a potent antitumor agent), by the treatment of 3 with Raney nickel did not afford the desired aza analog of TCN. Instead, it was established that a reductive cleavage of the pyridazine moiety of 3 had occurred to give 4-methylamino-6-methylthio-1-(β-D-ribofuranosyl)-1H-pyrazolo[3,4-d]pyrimidine-3-carboxamidine ( 6 ). Assuming that solubility was a problem in the reductive step, the isopropylidene derivative of 3 , 8-amino-6-methyl-4-methylthio-2-(2,3-O-isopropylidene-β-D-ribofuranosyl)-2,6-dihydro-1,2,3,5,6,7-hexaazaacenaphthylene ( 8 ), was treated with Raney nickel, only to observe that a similar reductive ring cleavage of 8 had occurred to afford 4-methylamino-6-methylthio-1-(2,3-O-isopropylidene-β-D-ribofuranosyl)-1H-pyrazolo[3,4-d]pyrimidine-3-carboxamidine ( 10 ) and 4-methylamino-1-(2,3-O-isopropylidene-β-D-ribofuranosyl)-1H-pyrazolo[3,4-d]pyrimidine-3-carboxamidine ( 11 ). Structural assignments for all products were established by physico-chemical procedures.  相似文献   

16.
The α-D-arabinonucleosides of cytosine ( 6 ) and 5-fluorouracil ( 9 ) were prepared from the 2,3,-5-tri-O-benzoyl-D-arabinofuranosyl halides, in keeping with the trans rule. The 2′-O-methyl-)3-D-arabinonucleosides of 5-fluorouraeil (β- 14 ) and adenine (β- 21a ) were prepared from 3,5-di-O-(4-ehlorobenzoyl)-2-O-methyl-α-D-arabinofuranosyl chloride, although in both cases a lesser amount of the α-anomer was also found. Reaction of 3,5-di-O-(4-chlorobenzoyl)-2-deoxy-2-(methylthio)-α-D-arabinofuranosyl chloride, prepared in four steps from methyl 2,3-anhydro-α-D-ribofurano-side ( 15 ), with N-benzoyladenine gave slightly more of the β- than the α-arabinonucleoside 20b . The β-anomer was converted to 9-[2-deoxy-2-(methylthio)-β-D-arabinofuranosyl]adenine. Only 1-α-D-arabinofuranosylcytosine ( 6 ) proved to be cytotoxic.  相似文献   

17.
Reaction of 2-formyl-2-(2,3-O-isopropylidene-5-O-trityl-D-ribofuranosyl)acetonitrile (VII) with semicarbazide hydrochloride followed by sodium ethoxide treatment afforded an α,β-mixture of 3-amino-2N-carbamoyl-4-(2,3-O-isopropylidene-5-O-trityl-D-ribofuranosyl)pyrazole (IX). Conversion of IX to 4-oxo-8-(2,3-O-isopropylidene-5-O-trityl-D-ribofuranosyl)-3H-pyrazolo[1,5-a]-1,3,5-triazine (XIII) was achieved by treatment of IX with ethylorthoformate. The β-isomer IXb gave only the β-isomer XIIIb, and the α-isomer IXa was converted exclusively into the α-isomer XIIIa. Upon deprotection with 3% n-butanolic hydrogen chloride, both IXa and IXb gave the same mixture of the α- and β-isomers of 3-amino-2N-carbamoyl-4-(D-ribosyl)pyrazole, which were separated by chromatography. The syntheses of the hitherto unknown compounds, 3-amino-2N-carbamoylpyrazole (IVa) and its 4-methyl analog (IVb) are also reported. Experimental details of the synthesis of 3-amino-4-(2,3-O-isopropylidene-5-O-trityl-β-D-ribofuranosyl)pyrazole (XIIb), an important intermediate for “purine-like” C-nucleosides, are also described.  相似文献   

18.
The Pfitzner-Moffatt oxidation of 6-chloro-9-(2,3-O-isopropylidene-β-D-ribofuranosyl)purine, 9-(2,3-O-isopropylidene-β-D-ribofuranosyl)-6-(methylthio)purine, and 2′,3′-O-isopropylideneadenosine gave the corresponding 5′-aldehydes (3, 13, and 4), which were allowed to react with a number of Wittig ylids. The resulting olefins, primarily trans, were reduced either catalytically or with diimide before removal of the 2′,3′-O-isopropylidene groups to give the desired 5′-substituted purine ribonucleosides.  相似文献   

19.
The preparation of N1 (2,3-O-isopropylidene-β-D-ribofuranosyl)-4-quinazolone ( 6 ) and N3-β-D-ribofuranosyI-4-quinazolone ( 3b ) are reported. The N3 derivative was prepared by the direct condensation of 4-trimethylsilyloxyquinazoline ( 2 ) and 2,3,5-tri-O-benzoyl- D - ribofuranosyl bromide. The N1 derivative was prepared from the previously reported N1 -β-D-ribofuranosyl-2,4-quinazolinedione via the cyclonucleoside 4 .  相似文献   

20.
Radical C-glycosidation of racemic 5-exo-benzeneselenyl-6-endo-chloro-3-methylidene-7-oxabicyclo[2.2.1]heptan-2-one ((±)-2) with α-acetobromofucose (3) provided a mixture of α-C-fucosides that were reduced with NaBH4 to give two diastereomeric alcohols that were separated readily. One of them ((?)-6) was converted into (?)-methyl 2-acetamido-4-O-acetyl-2,3-dideoxy-3-C-(3′,4′,5′-tri-O-acetyl-2′,6′-anhydro-1′,7′-dideoxy-α-L-glycero-D-galacto-heptitol-1′-C-yl)-α -D-galactopyranuronate ((?)-11) and then into (?)-methyl 2-acetamido-2,3-dideoxy-3-C-(2′,6′-anhydro-1′,7′-dideoxy-α-L-glycero-D-galacto-heptitol-1′-C-yl)-β -D-galactopyranoside ((?)-1), a new α-C(1→3)-L-fucopyranoside of N-acetylgalactosamine. Its 1H NMR data shows that this C-disaccharide (α-L-Fucp-(1→3)CH2-β-D-GalNAc-OMe) adopts a major conformation in solution similar to that expected for the corresponding O-linked disaccharide, i.e., with antiperiplanar σ(C-3′,C-2′) and σ(C-1′,C-3) bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号