首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, accurate and sensitive method for the microdetermination of benzocaine, lignocaine and procaine hydrochlorides in pure forms and in pharmaceutical formulations is described. The procedure is based on the reaction of those drugs in an aqueous acidic medium with p-benzoquinone to form charge-transfer complexes. The method has been used for the determination of 5.0-70, 5.0-60 and 5.0-90 microg ml(-1) of benzocaine, lignocaine HCl and procaine HCl, respectively. The complexes have apparent molar absorptivities of 1.70 x 10(3), 2.79 x 10(3) and 2.42 x 10(3) L mol(-1) cm(-1) and Sandell sensitivities of 9.72, 10.34 and 11.25 ng cm(-2), respectively. The proposed procedure of analysis is as accurate as the British Pharmacopoeial method (2003). The method was successfully used for the determination of those drugs in the presence of their degradation products, additives and excipients, which were normally encountered in pharmaceutical formulations.  相似文献   

2.
A simple, accurate and highly sensitive spectrophotometric method is proposed for the rapid determination of pipazethate hydrochloride, dextromethorphan hydrobromide and drotaverine hydrochloride using chromotrope 2B (C2B) and chromotrope 2R (C2R). The method consists of extracting the formed ion-associates into chloroform in the case of pipazethate HCl and dextromethorphan HBr or into methylene chloride in the case of drotaverine HCl. The ion-associates exhibit absorption maxima at 528, 540 and 532 nm with C2B and at 526, 517 and 522 nm with C2R for pipazethate HCl, dextromethorphan HBr and drotaverine HCl, respectively. The calibration curves resulting from the measurements of absorbance-concentration relations (at the optimum reaction conditions) of the extracted ion-pairs are linear over the concentration range 4.36-52.32 microg mL(-1) for pipazethate, 3.7-48.15 microg mL(-1) for dextromethorphan and 4.34-60.76 microg mL(-1) for drotaverine, respectively. The effect of acidity, reagent concentration, time, solvent and stoichiometric ratio of the ion-associates were estimated. The molar absorptivity and Sandell sensitivity of the reaction products were calculated. Statistical treatment of the results reflects that the procedure is precise, accurate and easily applied for the determination of the drugs under investigation in pure form and in their pharmaceutical preparations.  相似文献   

3.
Thin-layer chromatography, first derivative, ratio spectra derivative spectrophotometry and Vierordt's method have been developed for the simultaneous determination of paracetamol and drotaverine HCl. TLC densitometric method depends on the difference in Rf values using ethyl acetate:methanol:ammonia (100:1:5 v/v/v) as a mobile phase. The spots of the two drugs were scanned at 249 and 308 nm over concentration ranges of 60-1200 microg/ml and 20-400 microg/ml with mean percentage recovery 100.11%+/-1.91 and 100.15%+/-1.87, respectively. The first derivative spectrophotometric method deals with the measurements at zero-crossing points 259 and 325 nm with mean percentage recovery 99.25%+/-1.08 and 99.45%+/-1.14, respectively. The ratio spectra first derivative technique was used at 246 and 305 nm with mean percentage recovery 99.75%+/-1.93 and 99.08%+/-1.22, respectively. Beer's law for first derivative and ratio spectra derivative methods was obeyed in the concentration range 0.8-12.8 and 0.4-6.4 microg/ml of paracetamol and drotaverine HCl, respectively. Vierordt's method was applied to over come the overlapping of paracetamol and drotaverine HCl in zero-order spectra in concentration range 2-26 and 2-40 microg/ml respectively. The suggested methods were successfully applied for the analysis of the two drugs in laboratory prepared mixtures and their pharmaceutical formulation. The validity of the methods was assessed by applying the standard addition technique. The obtained results were statistically agreed with those obtained by the reported method.  相似文献   

4.
Two sensitive and simple spectrophotometric methods are developed for the determination of trazodone HCl, famotidine, and diltiazem HCl in pure and pharmaceutical preparations. The methods are based on the oxidation of the cited drugs with iron(III) in acidic medium. The liberated iron(II) reacts with 1,10-phenanthroline (method A) and the ferroin complex is colorimetrically measured at 510 nm against reagent blank. Method B is based on the reaction of the liberated Fe(II) with 2,2-bipyridyl to form a stable colored complex with lambda(max )at 520 nm. Optimization of the experimental conditions was described. Beer's law was obeyed in the concentration range of 1-5, 2-12, and 12-32 microg mL(-1) for trazodone, famotidine, and diltiazem with method A, and 1-10 and 8-16 microg mL(-1) for trazodone and famotidine with method B. The apparent molar absorptivity for method A is 1.06x10(5), 2.9x10(4), 1.2x10(4) and for method B is 9.4x10(4 )and 1.6x10(4), respectively. The suggested procedures could be used for the determination of trazodone, famotidine, and diltiazem, both in pure and dosage forms without interference from common excipients.  相似文献   

5.
Two spectrophotometric methods are described for the simultaneous determination of binary mixtures of carbidopa and levodopa in pharmaceutical formulations, without prior separation steps, using the mean centering of ratio spectra and H-point standard addition methods (HPSAM). The methods are based on the difference in the absorption spectra for the products of the reaction of carbidopa and levodopa with 4-aminobenzoic acid in the presence of periodate ion at pH 4.0. The methods allow rapid and accurate determination of carbidopa and levodopa. The results showed that the methods were capable to simultaneous determination of 0.30-10.00 microg ml(-1) and 0.50-10.00 microg ml(-1) each of carbidopa and levodopa. The proposed methods were successfully applied to the simultaneous determination of carbidopa and levodopa in pharmaceutical samples.  相似文献   

6.
A simple, rapid, and sensitive validated spectrophotometric method was developed for the determination of certain macrolide antibiotics namely, erythromycin (I), azithromycin dihydrate (II), clarithromycin (III), and roxithromycin (IV) in bulk powders, pharmaceutical formulations, and spiked biological fluids. The proposed method is based on the formation of a binary complex between each of the studied drugs and eosin Y in aqueous buffered medium. Under the optimum conditions, the binary complexes showed absorption maxima at 542-544 nm. The absorbance of the binary complexes obeyed Beer's law over the concentration range of 1-10 micro/g/mL for II, 2-20 microg/mL for I and IV, and 3-30 microg/mL for III. The mean percentage recoveries were 100.04 +/- 0.83, 99.98 +/- 0.80, 100.17 +/- 0.91, and 99.55 +/- 0.91, with minimum detectable molarities of 2 x 10(-7) for I and II, 4 x 10(-7) for III, and 3 x 10(-7) for IV. The different experimental parameters affecting the development and stability of the colors were studied and optimized. The proposed method was successfully applied to the analysis of the cited drugs in some pharmaceutical formulations. The results obtained were in good agreement with those obtained using the reference methods. The proposed method was further applied to spiked human urine and plasma. A proposal of the reaction pathway is suggested.  相似文献   

7.
Three sensitive, selective, accurate spectrophotometric and spectrofluorimetric methods have been developed for the determination of ropinirole hydrochloride in tablets. The first method was based on measuring the absorbance of drug solution in methanol at 250 nm. The Beer's law was obeyed in the concentration range 2.5-24 microg ml(-1). The second method was based on the charge transfer reaction of drug, as n-electron donor with 7,7,8,8-tetracyanoquinodimethane (TCNQ), as pi-acceptor in acetonitrile to give radical anions that are measured at 842 nm. The Beer's law was obeyed in the concentration range 0.6-8 microg ml(-1). The third method was based on derivatization reaction with 4-chloro-7-nitrobenzofurazan (NBD-Cl) in borate buffer of pH 8.5 followed by measuring the fluorescence intensity at 525 nm with excitation at 464 nm in chloroform. Beer's law was obeyed in the concentration range 0.01-1.3 microg ml(-1). The derivatization reaction product of drug with NBD-Cl was characterized by IR, 1H NMR and mass spectroscopy. The developed methods were validated. The following analytical parameters were investigated: the molar absorptivity (epsilon), limit of detection (LOD, microg ml(-1)) and limit of quantitation (LOQ, microg ml(-1)), precision, accuracy, recovery, and Sandell's sensitivity. Selectivity was validated by subjecting stock solution of ropinirole to acidic, basic, oxidative, and thermal degradation. No interference was observed from common excipients present in formulations. The proposed methods were successfully applied for determination of drug in tablets. The results of these proposed methods were compared with each other statistically.  相似文献   

8.
A simple and rapid analytical procedure was proposed for determination of tetracycline in pharmaceutical formulation, urine and plasma based on chemometrics methods and spectrophotometric measurements. The calibration set was constructed with twenty solutions in concentration range 0.25-13.00 microg ml(-1) for tetracycline. The procedure was repeated at nine different pH values. Partial least squares (PLS) models were built at each pH and used to determinate a set of synthetic tetracycline solutions. The best model was obtained at pH 8.00 (PLS-PH8). Parallel factor analysis (PARAFAC) model was applied to a three-way array constructed using all the pH data sets and enabled better results. The capabilities of the method for the analysis of real samples were evaluated by determination of tetracycline in pharmaceutical formulations and biological fluids with satisfactory results.  相似文献   

9.
Two rapid, simple and sensitive extractive specrophotometric methods has been developed for the determination of anti-tussive drugs, e.g., dextromethorphan hydrobromide (DEX) and pipazethate hydrochloride (PiCl) and anti-spasmodic drugs, e.g., drotaverine hydrochloride (DvCl) and trimebutine maleate (TM) in bulk and in their pharmaceutical formulations. The proposed methods depend upon the reaction of cobalt(II)-thiocyanate (method A) and molybdenum(V)-thiocyanate ions (method B) with the cited drugs to form stable ion-pair complexes which extractable with an n-butnol-dichloromethane solvent mixture (3.5:6.5) and methylene chloride for methods A and B, respectively. The blue and orange red color complexes are determined either colorimetrically at lambdamax 625 nm (using method A) and 467 or 470 nm for (DEX and PiCl) or (DvCl and TM), respectively (using method B). The concentration range is 20-400 and 2.5-50 microg mL-1 for methods A and B, respectively. The proposed method was successfully applied for the determination of the studied drugs in pure and in pharmaceutical formulations applying the standard additions technique and the results obtained in good agreement well with those obtained by the official method.  相似文献   

10.
Jie N  Yang D  Zhang Q  Yang J  Song Z 《Talanta》1998,46(5):1163-1168
A new method has been developed for the fluorometric determination of 3,4-dihydroxyphenylalaine (l-dopa) in pharmaceutical formulations. The reaction product, belonging to fluorescent species, has the excitation and emission maxima at 410 and 510 nm, respectively. Under the optimum conditions, responses were linear between 0.06-4.0 and 4.0-12.0 mug ml(-1). The detection limit, corresponding to a signal-to-noise ratio of 3, was 1 ng ml(-1). The relative standard deviation (n=10) was 0.6%. The proposed method was applied to determination of l-dopa in pharmaceutical formulations.  相似文献   

11.
Three accurate, rapid and simple atomic absorption spectrometric (AAS), conductometric and colorimetric methods were developed for the determination of gatifloxacin (GTF), moxifloxacin (MXF) and sparfloxacin (SPF). The proposed methods depend upon the reaction of ammonium reineckate with the studied drugs to form stable precipitate of ion-pair complexes, which was dissolved in acetone. The pink coloured complexes were determined either by AAS or colorimetrically at lambda(max) 525 nm directly using the dissolved complex. Using conductometric titration, the studied drugs could be evaluated in 50% (v/v) acetone. The optimizations of various experimental conditions were described. Optimum concentration ranges for the determination of GTF, MXF and SPF were 5.0-150, 40-440 microg mL(-1) and 0.10-1.5 mg mL(-1) using atomic absorption (AAS), conductometric and colorimetric methods, respectively. Detection and quantification limits are ranges from 1.5 to 2.3 microg mL(-1) using AAS method or 30-45 microg mL(-1) using colorimetric method. The proposed procedures have been applied successfully to the analysis of these drugs in pharmaceutical formulations and the results are favourably comparable to the reference methods.  相似文献   

12.
Patel  Sejal K.  Patel  Natavarlal J. 《Chromatographia》2009,69(3-4):393-396

A simple, sensitive, and precise thin layer chromatographic (TLC) method for simultaneous analysis of psychopharmacological drugs like amitriptyline HCl, trifluoperazine HCl, risperidone and alprazolam in their single dosage forms has been developed, validated, and used for determination of the compounds in commercial pharmaceutical products. The TLC separation was carried out on Merck TLC aluminium sheets of silica gel 60 F254 using carbon tetrachloride:acetone:triethylamine (8:2:0.3, v/v/v), as mobile phase. Densitometric measurements of their spots were achieved at 250 nm over the concentration range for amitriptyline HCl (50–1,200 ng spot−1), trifluoperazine HCl (50–1,200 ng spot−1), risperidone (100–2,400 ng spot−1) and alprazolam (25–600 ng spot−1). Limit of detection (LOD) for amitriptyline HCl (20 ng spot−1), trifluoperazine HCl (20 ng spot−1), risperidone (40 ng spot−1) and alprazolam (5 ng spot−1) was obtained. The study showed that TLC was sensitive and selective for determination of amitriptyline HCl, trifluoperazine HCl, risperidone and alprazolam using a single mobile phase. This proposed method is able for simultaneous determination of psychopharmacological drugs and also applicable for analysis of pharmaceutical formulations.

  相似文献   

13.
A kinetic spectrophotometric method has been described for the determination of metoprolol tartrate in pharmaceutical formulations. The method is based on reaction of the drug with alkaline potassium permanganate at 25+/-1 degrees C. The reaction is followed spectrophotometrically by measuring the change in absorbance at 610 nm as a function of time. The initial rate and fixed time (at 15.0 min) methods are utilized for constructing the calibration graphs to determine the concentration of the drug. Both the calibration graphs are linear in the concentration range of 1.46 x 10(-6)-8.76 x 10(-6) M (10.0-60.0 microg per 10 ml). The calibration data resulted in the linear regression equations of log (rate)=3.634+0.999 log C and A=6.300 x 10(-4)+6.491 x 10(-2) C for initial-rate and fixed time methods, respectively. The limits of quantitation for initial rate and fixed time methods are 0.04 and 0.10 microg ml(-1), respectively. The activation parameters such as E(a), DeltaH(double dagger), DeltaS(double dagger) and DeltaG(double dagger) are also evaluated for the reaction and found to be 90.73 kJ mol(-1), 88.20 kJ mol(-1), 84.54 J K(-1) mol(-1) and 63.01 kJ mol(-1), respectively. The results are validated statistically and through recovery studies. The method has been successfully applied to the determination of metoprolol tartrate in pharmaceutical formulations. Statistical comparison of the results with the reference method shows excellent agreement and indicates no significant difference in accuracy and precision.  相似文献   

14.
The present study is interested to develop a simple, rapid and accurate spectrophotometric method for determination of sodium flucloxacillin (fluc) in pure form and pharmaceutical formulations. The charge-transfer (CT) interactions between sodium flucloxacillin as electron donor and chloranilic acid (CLA), dichloroquinone 4-chloroimide (DCQ), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and 7,7,8,8 tetracyano-p-quinodimethane (TCNQ), as pi-electron acceptors have been investigated spectrophotometrically. Different variables affecting the reaction were studied and optimized. Under the optimum conditions, linear relationships with good correlation coefficients (0.9979-0.9995) were found between the absorbance and the concentration of the drug in the range 16-880 microg ml(-1). The proposed methods were applied successfully to the determination of the examined drug either in pure or pharmaceutical dosage forms with good accuracy and precision. The formation of the CT-complexes and the sites of interaction were confirmed by elemental analysis CHN, UV-vis, IR, (1)H NMR and mass spectra techniques. Based on Job's method of continuous variation plots, the obtained results indicate the formation of 1:1 charge-transfer complexes with the general formula [(fluc)(acceptor)]. Statistical analysis of the obtained results showed no significant difference between the proposed method and official method.  相似文献   

15.
Two simple, rapid and sensitive extractive spectrophotometric methods have been developed for the assay of trazodone hydrochloride (TRH) in pure and pharmaceutical formulations. These methods are based on the formation of chloroform soluble ion-association complexes of TRH with bromothymol blue (BTB) and with bromocresol purple (BCP) in KCl-HCl buffer of pH 2.0 (for BTB) and in NaOAc-AcOH buffer of pH of 3.6 (for BCP) with absorption maximum at 423 nm and at 408 nm for BTB and BCP, respectively. Reaction conditions were optimized to obtain the maximum color intensity. The absorbance was found to increase linearly with increase in concentration of TRH, which was corroborated by the calculated correlation coefficient values (0.9996, 0.9945). The systems obeyed Beer's law in the range of 0.2-14.5 and 0.2-14.1 microg/ml for BTB and BCP, respectively. Various analytical parameters have been evaluated and the results have been validated by statistical data. No interference was observed from common excipients present in pharmaceutical formulations. The proposed methods are simple, accurate and suitable for quality control applications.  相似文献   

16.
A single, rapid flow-through optosensor spectrofluorometric system is proposed for the determination of diphenhydramine in different pharmaceutical preparations. This sensor was developed in conjunction with a monochannel flow-injection analysis system with fluorometric solid-phase transduction. Diphenhydramine was directly injected into a carrier stream of ethanol/water, 50% (v:v), and transitorily retained on a sorption gel Sephadex G-15 placed in the detection area into the cell. The determination was carried out without any derivatization reaction by directly measuring the intrinsic fluorescence of the analyte and using the peak height as an analytical signal. The chemical and instrumental variables were optimized, and the influence of some foreign substances that can be found in typical pharmaceutical samples containing diphenhydramine was also investigated. Diphenhydramine could be determined in the concentration ranges of 0.5 - 8 microg ml(-1) and 0.1 - 1.2 microg ml(-1) with detection limits of 0.088 and 0.019 microg ml(-1) at sampling rates of 30 and 19 h(-1) for 200 and 800 microl of the sample volume, respectively.  相似文献   

17.
Simple and rapid spectrophotometric procedures have been established for quantitation of nefopam hydrochloride (NF) mebevrine hydrochloride (MB) and phenylpropanolamine hydrochloride (PP). The procedures are based on the reaction between the examined drugs (NF, MB and PP) and alizarin (I), alizarin red S (II), alizarin yellow G (III) and quinalizarin (IV) producing ion-pair complexes which can be measured at the optimum wavelength. The optimization of the reaction conditions is investigated. Beer's law is obeyed in the concentration ranges 0.5-30.0 microg ml(-1). The molar absorptivity, Sandell sensitivity, detection and quantification limits are also calculated. The correlation coefficient was > or =0.9988 (n=6) with a relative standard deviation (R.S.D.) of < or =1.3, for six determinations of 20 microg ml(-1). The methods are successfully applied to the determination of NF, MB and PP in their pharmaceutical formulations.  相似文献   

18.
Basavaiah K  SriLatha  Swamy JM 《Talanta》1999,50(4):887-892
A simple, rapid and sensitive spectrophotometric method has been developed for the assay of ceterizine hydrochloride (CTZH) in bulk drug and its pharmaceutical preparations. This method is based on the ion-pair complex reaction between CTZH and Alizarin Red S in Clarks-Lubs buffer. The chromogen being extractable with chloroform, could be measured quantitatively at 440 nm. All variables were studied to optimise the reaction conditions. Regression analysis of Beer's Law plot showed good correlation in the concentration range 2.5-22 microg ml(-1). The method has a detection limit of 0.1328 microg ml(-1). The proposed method has been successfully applied for the analysis of the bulk drug and its dosage forms such as tablets and syrups. No interference was observed from common pharmaceutical adjuvants.  相似文献   

19.
Sastry CS  Srinivas KR  Prasad KM 《Talanta》1996,43(10):1625-1632
A simple, sensitive and selective method for the spectrophotometric determination of drugs, viz., sulphamethoxazole, tetracycline HCl, amidopyrine, nifurtimox and isoniazid and biologically important amino acids, cysteine, aspartic acid and arginine based on their reactivity with chloramine-T (CAT) is proposed. The method involves the addition of excess CAT of a known concentration in the presence of 0.25 M HCl and the determination of the unreacted CAT by measurement of the decrease in the absorbance of the dye, gallocyanine (lambda(max): 540 nm), the most suitable of several dyes that were tested. This method was applied to the determination of drug contents in pharmaceutical formulations and to the measurement of the aspartic acid content of some protein hydrolysates. The method is useful for the determination of the target compounds in microgram quantities from 0.4-5.6 microg mL(-1) with the exceptions of arginine (1.0-8.0 microg mL(-1)) and nifurtimox (0.8-5.6 microg mL(-1)). Standard deviations were typically 0.5 mg per dose (RSD 0.5-1.2%). No interferences were observed from common excipients in formulations, and detailed interference studies of other amino acids in the determination of cysteine, aspartic acid and arginine are reported. The validity of the method was tested against spectrophotometric and titrimetric reference methods. Recoveries were 99.8-102.1%.  相似文献   

20.
New, simple, cost effective, accurate and reproducible UV-spectrophotometric methods were developed and validated for the estimation of moxifloxacin in bulk and pharmaceutical formulations. Moxifloxacin was estimated at 296 nm in 0.1N hydrochloric acid (pH 1.2) and at 289 nm in phosphate buffer (pH 7.4). Beer's law was obeyed in the concentration range of 1-12 microg ml(-1) (r2=0.9999) in hydrochloric acid and 1-14 microg ml(-1) (r2=0.9998) in the phosphate buffer medium. The apparent molar absorptivity and Sandell's sensitivity coefficient were found to be 4.63 x 10(4) l mol(-1) cm(-1) and 9.5 ng cm(-2)/0.001 A in hydrochloric acid; and 4.08 x 10(4) l mol(-1) cm(-1) and 10.8 ng cm(-2)/0.001 A in phosphate buffer media, respectively indicating the high sensitivity of the proposed methods. These methods were tested and validated for various parameters according to ICH guidelines. The detection and quantitation limits were found to be 0.0402, 0.1217 microg ml(-1) in hydrochloric acid and 0.0384, 0.1163 microg ml(-1) in phosphate buffer medium, respectively. The proposed methods were successfully applied for the determination of moxifloxacin in pharmaceutical formulations (tablets, i.v. infusions, eye drops and polymeric nanoparticles). The results demonstrated that the procedure is accurate, precise and reproducible (relative standard deviation <2%), while being simple, cheap and less time consuming and hence can be suitably applied for the estimation of moxifloxacin in different dosage forms and dissolution studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号