首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of C?C bonds embodies the core of organic chemistry because of its fundamental application in generation of molecular diversity and complexity. C?C bond‐forming reactions are well‐known challenges. To achieve this goal through direct functionalization of C?H bonds in both of the coupling partners represents the state‐of‐the‐art in organic synthesis. Oxidative C?C bond formation obviates the need for prefunctionalization of both substrates. This Minireview is dedicated to the field of C?C bond‐forming reactions through direct C?H bond functionalization under completely metal‐free oxidative conditions. Selected important developments in this area have been summarized with representative examples and discussions on their reaction mechanisms.  相似文献   

2.
A copper‐catalyzed aerobic oxidative amidation reaction of inert C?C bonds with tertiary amines has been developed for the synthesis of tertiary amides, which are significant units in many natural products, pharmaceuticals, and fine chemicals. This method combines C?C bond activation, C?N bond cleavage, and C?H bond oxygenation in a one‐pot protocol, using molecular oxygen as the sole oxidant without any additional ligands.  相似文献   

3.
Most of the efforts of organic chemists have been directed to the development of creative strategies to build carbon–carbon and carbon–heteroatom bonds in a predictable and efficient manner. In this Review, we show an alternative approach where challenging molecular skeletons could be prepared through selective cleavage of carbon–carbon bonds. We demonstrate that it has the potential to be a general principle in organic synthesis for the regio‐, diastereo‐, and even enantioselective preparation of adducts despite the fact that C? C single bonds are among the least reactive functional groups. The development of such strategies may have an impact on synthesis design and can ultimately lead to new selective and efficient processes for the utilization of simple hydrocarbons.  相似文献   

4.
Transition‐metal‐catalyzed C? F activation, in comparison with C? H activation, is more difficult to achieve and therefore less fully understood, mainly because carbon–fluorine bonds are the strongest known single bonds to carbon and have been very difficult to cleave. Transition‐metal complexes are often more effective at cleaving stronger bonds, such as C(sp2)? X versus C(sp3)? X. Here, the iridium‐catalyzed C? F activation of fluorarenes was achieved through the use of bis(pinacolato)diboron with the formation of the B? F bond and self‐coupling. This strategy provides a convenient method with which to convert fluoride aromatic compounds into symmetrical diaryl ether compounds. Moreover, the chemoselective products of the C? F bond cleavage were obtained at high yields with the C? Br and C? Cl bonds remaining.  相似文献   

5.
A Ru‐catalyzed direct C? H activation/meta‐bromination of arenes bearing pyridyl, pyrimidyl, and pyrazolyl directing groups has been developed. A series of bromo aryl pyridines and pyrimidines have been synthesized, and further coupling reactions have also been demonstrated for a number of representative functionalized arenes. Preliminary mechanistic studies have revealed that this reaction may proceed through radical‐mediated bromination when NBS is utilized as the bromine source. This type of transformation has opened up a new direction for the radical non‐ipso functionalization of metal with regard to future C? H activation development that would allow the remote functionalization of aromatic systems.  相似文献   

6.
Cyclobutenones have been explored as a new type of chiral 1,4‐dipole four‐carbon synthon, which readily undergoes organophosphine‐mediated C?C bond cleavage and asymmetric intermolecular 1,4‐dipolar spiroannulation with isatylidenemalononitrile in the presence of amino acid‐derived chiral phosphine catalyst to furnish enantioenriched 3‐spirocyclohexenone 2‐oxindoles in good yield with up to 87 % ee. To our knowledge, this is the first example of asymmetric transformation of cyclobutenones and the phosphine‐catalyzed asymmetric 1,4‐dipolar cycloaddition consisting of C?C bond activation is unprecedented.  相似文献   

7.
A new method for the synthesis of highly substituted naphthyridine‐based polyheteroaromatic compounds in high yields proceeds through rhodium(III)‐catalyzed multiple C? H bond cleavage and C? C and C? N bond formation in a one‐pot process. Such highly substituted polyheteroaromatic compounds have attracted much attention because of their unique π‐conjugation, which make them suitable materials for organic semiconductors and luminescent materials. Furthermore, a possible mechanism, which involves multiple chelation‐assisted ortho C? H activation, alkyne insertion, and reductive elimination, is proposed for this transformation.  相似文献   

8.
In the presence of a catalyst system consisting of Pd(OAc)2, PCy3, and Zn(OAc)2, the reaction of alkynyl aryl ethers with bicycloalkenes, α,ß‐unsaturated esters, or heteroarenes results in the site‐selective cleavage of two C? H bonds followed by the formation of C? C bonds. In all cases, the alkynyloxy group acts as a directing group for the activation of an ortho C? H bond and as a hydrogen acceptor, thus rendering the use of additives such as an oxidant or base unnecessary.  相似文献   

9.
An unprecedented Pd‐catalyzed regioselective activation of gem‐difluorinated cyclopropanes induced by C? C bond cleavage is reported. It provides a general and efficient access to a variety of 2‐fluoroallylic amines, ethers, esters, and alkylation products in high Z‐selectivity, which are important skeletons in many biologically active molecules. In addition, the transformation represents the first general application of gem‐difluorinated cyclopropanes as reaction partners in transition‐metal‐catalyzed cross‐coupling reaction.  相似文献   

10.
The first catalytic intermolecular proximal C1? C2 cleavage of benzocyclobutenones (BCB) without prior carbonyl activation or employing noble metals has been developed. This protocol operates at room temperature and is characterized by an exquisite chemo‐, regio‐ and diastereoselectivity profile, constituting a unique platform for preparing an array of elusive carbocyclic skeletons.  相似文献   

11.
A highly efficient synthesis of phenanthridine/benzoxazine‐fused quinazolinones by ligand‐free palladium‐catalyzed intramolecular C?H bond activation under mild conditions has been developed. The C?C coupling provides the corresponding N‐fused polycyclic heterocycles in good to excellent yields and with wide functional group tolerance.  相似文献   

12.
An overview of recent progress in the Fujiwara–Moritani reaction, which is the palladium‐catalyzed oxidative coupling of arenes with olefins to afford alkenyl arenes, is described. It is emphasized that regioselectivity on aryl ortho‐ or meta‐C?H activation could be controlled very well in the presence of Pd, Rh, or Ru catalysts with the assistance of various chelation groups on aromatic rings in this coupling reaction. Catalytic alkenylation of aryl C?H bonds from simple arenes is also discussed, especially from electron‐deficient arenes. These advanced protocols would not only make the Fujiwara–Moritani reaction more useful and applicable in organic synthesis but also light the way for the further development of the functionalization of normal C?H bonds.  相似文献   

13.
A straightforward method for the synthesis of highly functionalized vinylarenes through palladium‐catalyzed, norbornene‐mediated C?H activation/carbene migratory insertion is described. Extension to a one‐pot procedure is also developed. Furthermore, this method can also be used to generate polysubstituted bicyclic molecules. The reaction proceeds under mild conditions to give the products in satisfactory yields using readily available starting materials. This is a Catellani–Lautens reaction that incorporates different types of coupling partners. Additionally, this reaction is the first to demonstrate the possibility of combining Pd‐catalyzed insertion of diazo compounds and Pd‐catalyzed C?H activation.  相似文献   

14.
Over the last decade, substantial research has led to the introduction of an impressive number of efficient procedures which allow the selective construction of C? C bonds by directly connecting two different C? H bonds under oxidative conditions. Common to these methodologies is the generation of the reactive intermediates in situ by activation of both C? H bonds. This strategy was introduced by the group of Li as cross‐dehydrogenative coupling (CDC) and discloses waste‐minimized synthetic alternatives to classic coupling procedures which rely on the use of prefunctionalized starting materials. This Review highlights the recent progress in the field of cross‐dehydrogenative C? C formations and provides a comprehensive overview on existing procedures and employed methodologies.  相似文献   

15.
The development of efficient catalytic methods to cleave the relatively unreactive C? O bonds of ethers remains an important challenge in catalysis. Building on our group’s recent work, we report the dehydroaryloxylation of aryl alkyl ethers using pincer iridium catalysts. This method represents a rare fully atom‐economical method for ether C? O bond cleavage.  相似文献   

16.
Although 2‐imino‐1H‐imidazol‐5(2H)‐ones have important biological activities in metabolism, their synthesis has rarely been investigated. Quinoxalines as “privileged scaffolds” in medicinal chemistry have been extensively investigated, but the development of novel and efficient synthetic methods remains very attractive. Herein, we have developed two copper‐catalyzed domino reactions for the synthesis of 2‐imino‐1H‐imidazol‐5(2H)‐ones and quinoxalines involving C?C bond‐cleavage with a 1,3‐dicarbonyl unit as a leaving group. The domino sequence for the synthesis of 2‐imino‐1H‐imidazol‐5(2H)‐ones includes aza‐Michael addition, intramolecular cyclization, C?C bond‐cleavage, 1,2‐rearrangement, and aerobic dehydrogenation reaction, whereas the domino sequence for the synthesis of quinoxalines includes aza‐Michael addition, intramolecular cyclization, elimination reaction, and C?C bond‐cleavage reaction. The two domino reactions have significant advantages including high efficiency, mild reaction conditions, and high tolerance of various functional groups.  相似文献   

17.
A new strategy has been developed for the oxidant‐ and base‐free dehydrogenative coupling of N‐heterocycles at mild conditions. Under the action of an iridium catalyst, N‐heterocycles undergo multiple sp3 C? H activation steps, generating a nucleophilic enamine that reacts in situ with various electrophiles to give highly functionalized products. The dehydrogenative coupling can be cascaded with Friedel–Crafts addition, resulting in a double functionalization of the N‐heterocycles.  相似文献   

18.
A tunable rhodium‐catalyzed intramolecular alkyne insertion reaction proceeding through the C? C cleavage of benzocyclobutenones is described. Selective formation of either the direct or decarbonylative insertion product can be controlled by using different catalytic systems. A variety of fused β‐naphthol and indene scaffolds were obtained in good yields with high functional group tolerance. This work illustrates a divergent approach to synthesize fused‐ring systems by C? C activation/functionalization.  相似文献   

19.
Constructing biaryls through direct aromatic C? H functionalization of unactivated arenes has become a popular topic in organic chemistry. Many efficient methods have been developed. In this Communication, a direct arylation of unactivated arenes with a broad range of aryl iodides is reported. This reaction proceeds through a new type of amine‐catalyzed single electron transfer initiated radical coupling procedure to form biaryls in high yields under UV irradiation at room temperature. Only 20 mol% of TMEDA is used as the catalyst. No other additives are required for this transformation, thus avoiding the use of toxic transition metal catalysts, strong bases, or large amounts of other organic additives. This greener protocol provides a new strategy to achieve direct aromatic C? H functionalization and offers a new example of cost‐effective and environmentally benign access to biaryls.  相似文献   

20.
A copper‐mediated C6‐selective dehydrogenative heteroarylation of 2‐pyridones with 1,3‐azoles has been developed. The reaction proceeded smoothly by twofold C? H cleavage even in the absence of noble‐metal catalysts. The observed site selectivity was directed by a pyridyl substituent on the nitrogen atom of the pyridone ring. This directing group was readily removed after the coupling event, thus leading to 2‐pyridone derivatives with a free N? H group. Moreover, in some cases, catalytic turnover of the Cu salt was also possible with the ideal terminal oxidant: molecular oxygen in air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号