首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the title compound, {[Co2(C14H8O4)2(C10H8N2)2(H2O)2]·2C14H10O4}n, each CoII ion is six‐coordinate in a slightly distorted octahedral geometry. Both CoII ions are located on twofold axes. One is surrounded by two O atoms from two biphenyl‐2,2′‐dicarboxylate (dpa) dianions, two N atoms from two 4,4′‐bipyridine (bpy) ligands and two water molecules, while the second is surrounded by four O atoms from two dpa dianions and two N atoms from two bpy ligands. The coordinated dpa dianion functions as a κ3‐bridge between the two CoII ions. One carboxylate group of a dpa dianion bridges two adjacent CoII ions, and one O atom of the other carboxylate group also chelates to a CoII ion. The CoII ions are bridged by dpa dianions and bpy ligands to form a chiral sheet. There are several strong intermolecular hydrogen bonds between the H2dpa solvent molecule and the chiral sheet, which result in a sandwich structure.  相似文献   

2.
The title compound, {[PtIIPtIVI2(C2H8N2)4](HPO4)(H2PO4)I·3H2O}n, has a chain structure composed of square‐planar [Pt(en)2]2+ and elongated octa­hedral trans‐[PtI2(en)2]2+ cations (en is ethyl­ene­diamine) stacked alternately along the c axis and bridged by the I atoms; a three‐dimensionally valence‐ordered system exists with respect to the Pt sites. The title compound also has a unique cyclic tetra­mer structure composed of two hydrogenphosphate and two dihydrogenphosphate ions connected by strong hydrogen bonds [O⋯O = 2.522 (10), 2.567 (10) and 2.569 (11) Å]. The Pt and I atoms form a zigzag ⋯I—PtIV—I⋯PtII⋯ chain, with PtIV—I bond distances of 2.6997 (7) and 2.6921 (7) Å, inter­atomic PtII⋯I distances of 3.3239 (8) and 3.2902 (7) Å, and PtIV—I⋯PtII angles of 154.52 (3) and 163.64 (3)°. The structural parameters indicating the mixed‐valence state of platinum, expressed by δ = (PtIV—I)/(PtII—I), are 0.812 and 0.818 for the two independent I atoms.  相似文献   

3.
We reported a novel strategy for investigating small molecule binding to G‐quadruplexes (GQs). A newly synthesized dinuclear platinum(II) complex (Pt2L) containing a nitroxide radical was shown to selectively bind a GQ‐forming sequence derived from human telomere (hTel). Using the nitroxide moiety as a spin label, electron paramagnetic resonance (EPR) spectroscopy was carried out to investigate binding between Pt2L and hTel GQ. Measurements indicated that two molecules of Pt2L bind with one molecule of hTel GQ. The inter‐spin distance measured between the two bound Pt2L, together with molecular docking analyses, revealed that Pt2L predominately binds to the neighboring narrow and wide grooves of the G‐tetrads as hTel adopts the antiparallel conformation. The design and synthesis of nitroxide tagged GQ binders, and the use of spin‐labeling/EPR to investigate their interactions with GQs, will aid the development of small molecules for manipulating GQs involved in crucial biological processes.  相似文献   

4.
The title compound, catena‐poly[[[bis(ethylenediamine‐κ2N,N′)platinum(II)]‐ μ‐chlorido‐[bis(ethylenediamine)platinum(IV)]‐μ‐chlorido] tetrakis{4‐[(4‐hydroxyphenyl)diazenyl]benzenesulfonate} dihydrate], {[PtIIPtIVCl2(C2H8N2)4](HOC6H4N=NC6H4SO3)4·2H2O}n, has a linear chain structure composed of square‐planar [Pt(en)2]2+ (en is ethylenediamine) and elongated octahedral trans‐[PtCl2(en)2]2+ cations stacked alternately, bridged by Cl atoms, along the b axis. The Pt atoms are located on an inversion centre, while the Cl atoms are disordered over two sites and form a zigzag ...Cl—PtIV—Cl...PtII... chain, with a PtIV—Cl bond length of 2.3140 (14) Å, an interatomic PtII...Cl distance of 3.5969 (15) Å and a PtIV—Cl...PtII angle of 170.66 (6)°. The structural parameter indicating the mixed‐valence state of the Pt atom, expressed by δ = (PtIV—Cl)/(PtII...Cl), is 0.643.  相似文献   

5.
A macrocyclic tetranuclear platinum(II) complex [Pt(en)(4,4′‐bpy)]4(NO3)8 ( 1 ?(NO3)8; en=ethylenediamine, 4,4′‐bpy=4,4′‐bipyridine) and a mononuclear platinum(IV) complex [Pt(en)2Br2]Br2 ( 2 ?Br2) formed two kinds of PtII/PtIV mixed valence assemblies when reacted: a discrete host–guest complex 1 ? 2 ?Br10 ( 3 ) and an extended 1‐D zigzag sheet 1 ?( 2 )3?Br8(NO3)6 ( 4 ). Single crystal X‐ray analysis showed that the dimensions of the assemblies could be stoichiometrically controlled. Resonance Raman spectra suggested the presence of an intervalence interaction, which is typically observed for quasi‐1‐D halogen‐bridged MII/MIV complexes. The intervalence interaction indicates the presence of an isolated {PtII???X? PtIV? X???PtII} moiety in the structure of 4 . On the basis of electronic spectra and polarized reflectance measurements, we conclude that 4 exhibits intervalence charge transfer (IVCT) bands. A Kramers–Kronig transformation was carried out to obtain an optical conductivity spectrum, and two sub‐bands corresponding to slightly different PtII–PtIV distances were observed.  相似文献   

6.
A mixed ligand approach was exploited to synthesize a new series of MnII‐based coordination polymers (CPs), namely, CP1 {[Mn(μ‐dpa)(μ‐4,4′‐bp)]?MeOH}, CP2 {[Mn3(μ‐dpa)3(2,2′‐bp)2]}, CP3 {[Mn3(μ‐dpa)3(1,10‐phen)2]?2 H2O}, CP4 {[Mn(μ‐dpa)(μ‐4,4′‐bpe)1.5]?H2O}, CP5 {[Mn2(μ‐dpa)2(μ‐4,4′‐bpe)2]? DEF}, and CP6 {[Mn(μ‐dpa)(μ‐4,4′‐bpe)1.5]? DMA} (dpa=3,5‐dicarboxyphenyl azide, 2,2′‐bp=2,2′‐bipyridine, 1,10‐phen=1,10‐phenanthroline, 4,4′‐bpe=1,2‐bis(4‐pyridyl)ethylene, 4,4′‐bp=4,4′‐bipyridine, DEF=N,N‐diethylformamide, DMA=N,N‐dimethylacetamide), to develop multifunctional CPs. Various techniques, such as single‐crystal X‐ray diffraction (SXRD), FTIR spectroscopy, elemental analysis, and thermogravimetric analysis, were employed to fully characterize these CPs. The majority of the CPs displayed a four‐connected sql topology, whereas CP4 and CP6 exhibited a two‐dimensional SnS network architecture, which was further entangled in a polycatenation mode. Compound CP1 displayed an open framework structure. The CPs were scaled down to the nanoregime in a ball mill for cell imaging studies. Whereas CP2 and CP4 were employed for cell imaging with RAW264.7 cells, CP1 was exploited for both cell imaging and heterogeneous catalysis in a cyanosilylation reaction.  相似文献   

7.
The synthesis of organometallic complexes of modified 26π‐conjugated hexaphyrins with absorption and emission capabilities in the third near‐infrared region (NIR‐III) is described. Symmetry alteration of the frontier molecular orbitals (MOs) of bis‐PdII and bis‐PtII complexes of hexaphyrin via N‐confusion modification led to substantial metal dπ–pπ interactions. This MO mixing, in turn, resulted in a significantly narrower HOMO–LUMO energy gap. A remarkable long‐wavelength shift of the lowest S0→S1 absorption beyond 1700 nm was achieved with the bis‐PtII complex, t ‐Pt2‐3 . The emergence of photoacoustic (PA) signals maximized at 1700 nm makes t ‐Pt2‐3 potentially useful as a NIR‐III PA contrast agent. The rigid bis‐PdII complexes, t ‐Pd2‐3 and c ‐Pd2‐3 , are rare examples of NIR emitters beyond 1500 nm. The current study provides new insight into the design of stable, expanded porphyrinic dyes possessing NIR‐III‐emissive and photoacoustic‐response capabilities.  相似文献   

8.
A new one‐dimensional platinum mixed‐valence complex with nonhalogen bridging ligands, namely catena‐poly[[[bis(ethane‐1,2‐diamine‐κ2N,N′)platinum(II)]‐μ‐thiocyanato‐κ2S:S‐[bis(ethane‐1,2‐diamine‐κ2N,N′)platinum(IV)]‐μ‐thiocyanato‐κ2S:S] tetrakis(perchlorate)], {[Pt2(SCN)2(C2H8N2)4](ClO4)4}n, has been isolated. The PtII and PtIV atoms are located on centres of inversion and are stacked alternately, linked by the S atoms of the thiocyanate ligands, forming an infinite one‐dimensional chain. The PtIV—S and PtII...S distances are 2.3933 (10) and 3.4705 (10) Å, respectively, and the PtIV—S...PtII angle is 171.97 (4)°. The introduction of nonhalogen atoms as bridging ligands in this complex extends the chemical modifications possible for controlling the amplitude of the charge‐density wave (CDW) state in one‐dimensional mixed‐valence complexes. The structure of a discrete PtIV thiocyanate compound, bis(ethane‐1,2‐diamine‐κ2N,N′)bis(thiocyanato‐κS)platinum(IV) bis(perchlorate) 1.5‐hydrate, [Pt(SCN)2(C4H8N2)2](ClO4)2·1.5H2O, has monoclinic (C2) symmetry. Two S‐bound thiocyanate ligands are located in trans positions, with an S—Pt—S angle of 177.56 (3)°.  相似文献   

9.
A novel one‐dimensional CuII coordination polymer, catena‐poly[bis(μ4‐3‐{[2‐(3‐hydroxy‐2‐oxidobenzylidene)hydrazinylidene]methyl}benzene‐1,2‐diolato)dimethanoltricopper(II)], [Cu3(C14H10N2O4)2(CH3OH)2]n, (I), was constructed with a di‐Schiff base supported centrosymmetric trinuclear CuII subunit. In the subunit, two peripheral symmetry‐related CuII cations have square‐pyramidal CuNO4 geometry and the central third CuII cation lies on an inversion centre with octahedral CuN2O4 geometry. In (I), each partially deprotonated di‐Schiff base 3‐{[2‐(3‐hydroxy‐2‐oxidobenzylidene)hydrazinylidene]methyl}benzene‐1,2‐diolate ligand (Hbcaz3−) acts as a heptadentate ligand to bind the CuII centres into chains along the a axis. A centrosymmetric Cu2O2 unit containing an asymmetrically bridging O atom, being axial at one Cu atom and equatorial at the other Cu atom, links the trinuclear CuII subunit into a one‐dimensional chain, which is reinforced by intramolecular phenol–methanol O—H...O and methanol–phenolate O—H...O hydrogen bonds. Interchain π–π stacking interactions between pyrocatechol units, with a distance of 3.5251 (18) Å, contribute to the stability of the crystal packing.  相似文献   

10.
A series of platinum(II) complexes with tridentate ligands was synthesized and their interactions with G‐quadruplex DNA within the c‐myc gene promoter were evaluated. Complex 1 , which has a flat planar 2,6‐bis(benzimidazol‐2‐yl)pyridine (bzimpy) scaffold, was found to stabilize the c‐myc G‐quadruplex structure in a cell‐free system. An in silico G‐quadruplex DNA model has been constructed for structure‐based virtual screening to develop new PtII‐based complexes with superior inhibitory activities. By using complex 1 as the initial structure for hit‐to‐lead optimization, bzimpy and related 2,6‐bis(pyrazol‐3‐yl)pyridine (dPzPy) scaffolds containing amine side‐chains emerge as the top candidates. Six of the top‐scoring complexes were synthesized and their interactions with c‐myc G‐quadruplex DNA have been investigated. The results revealed that all of the complexes have the ability to stabilize the c‐myc G‐quadruplex. Complex 3 a ([PtII L2R ] + ; L2 =2,6‐bis[1‐(3‐piperidinepropyl)‐1H‐enzo[d]imidazol‐2‐yl]pyridine, R =Cl) displayed the strongest inhibition in a cell‐free system (IC50=2.2 μM ) and was 3.3‐fold more potent than that of 1 . Complexes 3 a and 4 a ([PtII L3R ]+; L3 =2,6‐bis[1‐(3‐morpholinopropyl)‐1H‐pyrazol‐3‐yl]pyridine, R =Cl) were found to effectively inhibit c‐myc gene expression in human hepatocarcinoma cells with IC50 values of ≈17 μM , whereas initial hit 1 displayed no significant effect on gene expression at concentrations up to 50 μM . Complexes 3 a and 4 a have a strong preference for G‐quadruplex DNA over duplex DNA, as revealed by competition dialysis experiments and absorption titration; 3 a and 4 a bind G‐quadruplex DNA with binding constants (K) of approximately 106–107 dm3 mol?1, which are at least an order of magnitude higher than the K values for duplex DNA. NMR spectroscopic titration experiments and molecular modeling showed that 4 a binds c‐myc G‐quadruplex DNA through an external end‐stacking mode at the 3′‐terminal face of the G‐quadruplex. Intriguingly, binding of c‐myc G‐quadruplex DNA by 3 b is accompanied by an increase of up to 38‐fold in photoluminescence intensity at λmax=622 nm.  相似文献   

11.
Two new trinuclear complexes [CuII(NiIIX1)2(C2H5OH)2]· (ClO4)2·2(CH3OH) ( 1 ) and [CuII(NiIIX2)2(H2O)]·(ClO4)2· 0.75(H2O) ( 2 ) (X1 = dianion of 5,6;13,14‐dibenzo‐7,12‐bis(ethoxycarboxyl)‐9‐methyl‐2,3‐dioxo‐1,4,8,11‐tetraazacyclotetradeca‐7,11‐diene. X2 = dianion of 5,6;13,14‐dibenzo‐9,10‐cyclohexano‐7,12‐bis(ethoxycarboxyl)‐2,3‐dioxo‐1,4,8,11‐tetraazacyclotetradeca7,11‐diene.) have been synthesized and characterized by single crystal X‐ray analysis, elemental analysis, IR, UV and EPR spectroscopies. The complexes consist of NiIICuIINiII heteronuclear cationic entities. The central CuII atom of 1 lies in an octahedral coordination environment, while that of 2 resides in a square‐pyramidal coordination sphere. The adjacent trinuclear units of 1 are linked together through π‐π stacking interactions resulting in a 1D supramolecular chain, whereas the π‐π stacking interactions between the contiguous units of 2 lead to a 2D structure. The EPR spectra of the two complexes show a signal of an axially elongated octahedral CuII system in 1 and an axially elongated square‐pyramidal CuII system in 2 , respectively. The hyperfine splitting of the CuII atoms (ICu = 3/2) has also been observed in the EPR spectra.  相似文献   

12.
Metal coordination to N9‐substituted adenines, such as the model nucleobase 9‐methyladenine (9MeA), under neutral or weakly acidic pH conditions in water preferably occurs at N1 and/or N7. This leads, not only to mononuclear linkage isomers with N1 or N7 binding, but also to species that involve both N1 and N7 metal binding in the form of dinuclear or oligomeric species. Application of a trans‐(NH3)2PtII unit and restriction of metal coordination to the N1 and N7 sites and the size of the oligomer to four metal entities generates over 50 possible isomers, which display different feasible connectivities. Slowly interconverting rotamers are not included in this number. Based on 1H NMR spectroscopic analysis, a qualitative assessment of the spectroscopic features of N1,N7‐bridged species was attempted. By studying the solution behavior of selected isolated and structurally characterized compounds, such as trans‐[PtCl(9MeA‐N7)(NH3)2]ClO4 ? 2H2O or trans,trans‐[{PtCl(NH3)2}2(9MeA‐N1,N7)][ClO4]2 ? H2O, and also by application of a 9MeA complex with an (NH3)3PtII entity at N7, [Pt(9MeA‐N7)(NH3)3][NO3]2, which blocks further cross‐link formation at the N7 site, basic NMR spectroscopic signatures of N1,N7‐bridged PtII complexes were identified. Among others, the trinuclear complex trans‐[Pt(NH3)2{μ‐(N1‐9MeA‐N7)Pt(NH3)3}2][ClO4]6 ? 2H2O was crystallized and its rotational isomerism in aqueous solution was studied by NMR spectroscopy and DFT calculations. Interestingly, simultaneous PtII coordination to N1 and N7 acidifies the exocyclic amino group of the two 9MeA ligands sufficiently to permit replacement of one proton each by a bridging heterometal ion, HgII or CuII, under mild conditions in water.  相似文献   

13.
The protonation and ZnII/CuII complexation constants of tripodal polyamine ligand N1‐(2‐aminoethyl)‐N1‐(1H‐imidazol‐4‐ylmethyl)‐ethane‐1,2‐diamine (HL) were determined by potentiometric titration. Three new compounds, i.e. [H3(HL)](ClO4)3 ( 5 ), [Zn(HL)Cl](ClO4) ( 6 ) and {[Zn(L)](ClO4)}n ( 7 ) were obtained by reactions of HL · 4HCl with Zn(ClO4)2 · 6H2O under different reaction pH, and they were compared with the corresponding CuII complexes reported previously. The results indicate that the reaction pH and metal ions have remarkable influence on the formation and structure of the complexes.  相似文献   

14.
The first examples of dimeric, di‐PtII‐containing heteropolytungstates are reported. The two isomeric di‐platinum(II)‐containing 22‐tungsto‐2‐phosphates [anti‐PtII2(α‐PW11O39)2]10? ( 1 a ) and [syn‐PtII2(α‐PW11O39)2]10? ( 2 a ) were synthesized in aqueous pH 3.5 medium using one‐pot procedures. Polyanions 1 a and 2 a contain a core comprising two face‐on PtO4 units, with a Pt???Pt distance of 2.9–3 Å. Both polyanions were investigated by single‐crystal XRD, IR, TGA, UV/Vis, 31P NMR, ESI‐MS, CID‐MS/MS, electrochemistry, and DFT. On the basis of DFT and electrochemistry, we demonstrated that the {Pt2II} moiety in 1 a and 2 a can undergo fully reversible two‐electron oxidation to {Pt2III}, accompanied by formation of a single Pt?Pt bond. Hence we have discovered the novel subclass of PtIII‐containing heteropolytungstates.  相似文献   

15.
The imidazole‐based dicarboxylate ligand 2‐(4‐(pyridin‐4‐yl)phenyl)‐1H‐imidazole‐4,5‐dicarboxylic acid (H3PyPhIDC), was synthesized and its coordination chemistry was studied. Solvothermal reactions of CaII, MnII, CoII, and NiII ions with H3PyPhIDC produced four coordination polymers, [Ca(μ3‐HPyPhIDC)(H2O)2]n ( 1 ), {[M32‐H2PyPhIDC)23‐HPyPhIDC)26(H2O)2] · 6H2O}n [M = Mn ( 2 ), Co ( 3 )], and {[Ni(μ3‐HPyPhIDC)(H2O)] · H2O}n ( 4 ). Compounds 1 – 4 were analyzed by IR spectroscopy, elemental analyses, and single‐crystal and powder X‐ray diffraction. Compound 1 displays a one‐dimensional (1D) infinite chain. Compounds 2 and 3 are of similar structure, showing 2D network structures with a (4,4) topology based on trinuclear clusters. Compound 4 has another type of 2D network structure with a 3‐connected (4.82) topology. The results revealed that the structural diversity is attributed to the coordination numbers and geometries of metal ions as well as the coordination modes and conformations of H3PyPhIDC. Moreover, the thermogravimetric analyses of all the compounds as well as luminescence properties of the H3PyPhIDC ligand and compound 1 were also studied.  相似文献   

16.
Two PtIV and two PtII complexes containing a 2,2′‐bipyridine ligand were treated with a short DNA oligonucleotide under light irradiation at 37 °C or in the dark at 37 and 50 °C. Photolysis and thermolysis of the PtIV complexes led to spontaneous reduction of the PtIV to the corresponding PtII complexes and to binding of PtII 2,2′‐bipyridine complexes to N7 of guanine. When the reduction product was [Pt(bpy)Cl2], formation of bis‐oligonucleotide adducts was observed, whereas [Pt(bpy)(MeNH2)Cl]+ gave monoadducts, with chloride ligands substituted in both cases. Neither in the dark nor under light irradiation was the reductive elimination process of these PtIV complexes accompanied by oxidative DNA damage. This work raises the question of the stability of photoactivatable PtIV complexes toward moderate heating conditions.  相似文献   

17.
Aggregated β‐amyloid (Aβ) is widely considered as a key factor in triggering progressive loss of neuronal function in Alzheimer's disease (AD), so targeting and inhibiting Aβ aggregation has been broadly recognized as an efficient therapeutic strategy for curing AD. Herein, we designed and prepared an organic platinum‐substituted polyoxometalate, (Me4N)3[PW11O40(SiC3H6NH2)2PtCl2] (abbreviated as PtII‐PW11) for inhibiting Aβ42 aggregation. The mechanism of inhibition on Aβ42 aggregation by PtII‐PW11 was attributed to the multiple interactions of PtII‐PW11 with Aβ42 including coordination interaction of Pt2+ in PtII‐PW11 with amino group in Aβ42, electrostatic attraction, hydrogen bonding and van der Waals force. In cell‐based assay, PtII‐PW11 displayed remarkable neuroprotective effect for Aβ42 aggregation‐induced cytotoxicity, leading to increase of cell viability from 49 % to 67 % at a dosage of 8 μm . More importantly, the PtII‐PW11 greatly reduced Aβ deposition and rescued memory loss in APP/PS1 transgenic AD model mice without noticeable cytotoxicity, demonstrating its potential as drugs for AD treatment.  相似文献   

18.
Phosphonio‐benzo[c]phospholides with an additional phosphonium ylide substituent in 3‐position were synthesized by deprotonation of appropriately substituted 1, 3‐bis‐phosphonio benzophospholide cations and characterized by spectroscopic and analytical data. The ability of these molecules to act as bidentate P, C‐chelating ligands to transition metal atoms was demonstrated in the reactions with [W(CO)4(norbornadiene)] and [MCl2(cyclooctadiene)] (M = Pd, Pt). The PdII and PtII complexes are distinguished by a strong inclination towards addition of H2O to the 10π‐electron system of the ligand. The molecular structures of a W0 complex with a P, C‐chelating ylidyl‐phosphonio‐benzophospholide ligand and of the product resulting from H2O‐addition to a corresponding PtII complex were determined. The structural parameters of the W0 complex provide evidence for the presence of substantial steric strain around the metal atom.  相似文献   

19.
Mononuclear copper(II) and trinuclear cobalt(II) complexes, namely [Cu(L1)]2 · CH2Cl2 and [{Co(L2)(EtOH)}2Co(H2O)] · EtOH {H2L1 = 4,6‐dichloro‐6′‐methyoxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol and H3L2 = 6‐ethyoxy‐6′‐hydroxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol}, were synthesized and characterized by elemental analyses, IR and UV/Vis spectroscopy, and single‐crystal X‐ray diffraction. In the CuII complex, the CuII atom is four‐coordinate, with a N2O2 coordination sphere, and has a slightly distorted square‐planar arrangement. Interestingly, the obtained trinuclear CoII complex is different from the common reported 2:3 (L:CoII) salamo‐type CoII complexes. Infinite 2D layer supramolecular structures are formed via abundant intermolecular hydrogen bonding and π ··· π stacking interactions in the CuII and CoII complexes.  相似文献   

20.
The bromo‐substituted aromatic dicarboxylic acid 5‐amino‐2,4,6‐tribromoisophthalic acid (H2ATBIP) was used to assemble with CdII ions in the presence of the N‐donor flexible bipyridyl ligands 3,3′‐(diazene‐1,2‐diyl)dipyridine (mzpy) and 1,3‐bis(pyridin‐3‐ylmethyl)urea (3bpmu), leading to the formation of two chain coordination polymers by adopting solution methods, namely, catena‐poly[[[triaqua(5‐amino‐2,4,6‐tribromoisophthalato‐κO)cadmium(II)]‐μ‐3,3′‐(diazene‐1,2‐diyl)dipyridine‐κ2N1:N1′] dihydrate], {[Cd(C8H2Br3NO4)(C10H8N4)(H2O)3]·2H2O}n or {[Cd(ATBIP)(mzpy)(H2O)3]·2H2O}n, ( 1 ), and catena‐poly[[[tetraaquacadmium(II)]‐μ‐1,3‐bis(pyridin‐3‐ylmethyl)urea‐κ2N1:N1′‐[diaquabis(5‐amino‐2,4,6‐tribromoisophthalato‐κO)cadmium(II)]‐μ‐1,3‐bis(pyridin‐3‐ylmethyl)urea‐κ2N1:N1′] octahydrate], {[Cd(C8H2Br3NO4)(C12H12N4O)(H2O)3]·4H2O}n or {[Cd(ATBIP)(3bpmu)(H2O)3]·4H2O}n, ( 2 ). Both complexes were characterized by FT–IR spectroscopic analysis, thermogravimetric analysis (TGA), solid‐state diffuse reflectance UV–Vis spectroscopic analysis, and single‐crystal and powder X‐ray diffraction analysis (PXRD). The mzpy and 3bpmu ligands bridge the CdII metal centres in ( 1 ) and ( 2 ) into one‐dimensional chains, and the ATBIP2− ligands show a monodentate coordination to the CdII centres in both coordination polymers. A discrete water tetramer exists in ( 1 ). Within the chains of ( 1 ) and ( 2 ), there are halogen bonds between adjacent ATBIP2− and mzpy or 3bpmu ligands, as well as hydrogen bonds between the ATBIP2− ligands and the coordinated water molecules. With the aid of weak interactions, the structures of ( 1 ) and ( 2 ) are further extended into three‐dimensional supramolecular networks. An analysis of the solid‐state diffuse reflectance UV–Vis spectra of ( 1 ) and ( 2 ) indicates that a wide indirect band gap exists in both complexes. Complexes ( 1 ) and ( 2 ) exhibit irreversible and reversible dehydration–rehydration behaviours, respectively, and the solid‐state fluorescence properties of both complexes have been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号