首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a solution‐phase synthetic route to copper nanoparticles with controllable size and shape. The synthesis of the nanoparticles is achieved by the reduction of copper(II) salt in aqueous solution with hydrazine under air atmosphere in the presence of poly(acrylic acid) (PAA) as capping agent. The results suggest that the pH plays a key role for the formation of pure copper nanoparticles, whereas the concentration of PAA is important for controlling the size and geometric shape of the nanoparticles. The average size of the copper nanoparticles can be varied from 30 to 80 nm, depending on the concentration of PAA. With a moderate amount of PAA, faceted crystalline copper nanoparticles are obtained. The as‐synthesized copper nanoparticles appear red in color and are stable for weeks, as confirmed by UV/Vis and X‐ray photoemission (XPS) spectroscopy. The faceted crystalline copper nanoparticles serve as an effective catalyst for N‐arylation of heterocycles, such as the C? N coupling reaction between p‐nitrobenzyl chloride and morpholine producing 4‐(4‐nitrophenyl)morpholine in an excellent yield under mild reaction conditions. Furthermore, the nanoparticles are proven to be versatile as they also effectively catalyze the three‐component, one‐pot Mannich reaction between p‐substituted benzaldehyde, aniline, and acetophenone affording a 100 % conversion of the limiting reactant (aniline).  相似文献   

2.
A facile synthesis of highly stable, water‐dispersible metal‐nanoparticle‐decorated polymer nanocapsules (M@CB‐PNs: M=Pd, Au, and Pt) was achieved by a simple two‐step process employing a polymer nanocapsule (CB‐PN) made of cucurbit[6]uril (CB[6]) and metal salts. The CB‐PN serves as a versatile platform where various metal nanoparticles with a controlled size can be introduced on the surface and stabilized to prepare new water‐dispersible nanostructures useful for many applications. The Pd nanoparticles on CB‐PN exhibit high stability and dispersibility in water as well as excellent catalytic activity and recyclability in carbon–carbon and carbon–nitrogen bond‐forming reactions in aqueous medium suggesting potential applications as a green catalyst.  相似文献   

3.
A facile synthesis based on the addition of ascorbic acid to a mixture of Na2PdCl4, K2PtCl6, and Pluronic P123 results in highly branched core–shell nanoparticles (NPs) with a micro–mesoporous dandelion‐like morphology comprising Pd core and Pt shell. The slow reduction kinetics associated with the use of ascorbic acid as a weak reductant and suitable Pd/Pt atomic ratio (1:1) play a principal role in the formation mechanism of such branched Pd@Pt core–shell NPs, which differs from the traditional seed‐mediated growth. The catalyst efficiently achieves the reduction of a variety of olefins in good to excellent yields. Importantly, higher catalytic efficiency of dandelion‐like Pd@Pt core–shell NPs was observed for the olefin reduction than commercially available Pt black, Pd NPs, and physically admixed Pt black and Pd NPs. This superior catalytic behavior is not only due to larger surface area and synergistic effects but also to the unique micro–mesoporous structure with significant contribution of mesopores with sizes of several tens of nanometers.  相似文献   

4.
Gold nanoparticles (1 nm in size) stabilized by ammonium salts of hyperbranched polystyrene are prepared. Selection of the R groups provides access to both water‐ and organo‐dispersible gold nanoparticles. The resulting gold nanoparticles are subjected to studies on catalysis in solution, which include reduction of 4‐nitrophenol with sodium borohydride, aerobic oxidation of alcohols, and homocoupling of phenylboronic acid. In the reduction of 4‐nitrophenol, the catalytic activity is clearly dependent on the size of the gold nanoparticles. For the aerobic oxidation of alcohols, two types of biphasic oxidation are achieved: one is the catalyst dispersing in the aqueous phase, whereas the other is in the organic phase. The catalysts are reusable more than four times without loss of the catalytic activity. Selective synthesis of biphenyl is achieved by the homocoupling of phenylboronic acid catalyzed by organo‐dispersible gold nanoparticles.  相似文献   

5.
Heptazine‐based polymeric carbon nitrides (PCN) are promising photocatalysts for light‐driven redox transformations. However, their activity is hampered by low surface area resulting in low concentration of accessible active sites. Herein, we report a bottom‐up preparation of PCN nanoparticles with a narrow size distribution (ca. 10±3 nm), which are fully soluble in water showing no gelation or precipitation over several months. They allow photocatalysis to be carried out under quasi‐homogeneous conditions. The superior performance of water‐soluble PCN, compared to conventional solid PCN, is shown in photocatalytic H2O2 production via reduction of oxygen accompanied by highly selective photooxidation of 4‐methoxybenzyl alcohol and benzyl alcohol or lignocellulose‐derived feedstock (ethanol, glycerol, glucose). The dissolved photocatalyst can be easily recovered and re‐dissolved by simple modulation of the ionic strength of the medium, without any loss of activity and selectivity.  相似文献   

6.
Water‐dispersible and luminescent gadolinium oxide (GO) nanoparticles (NPs) were designed and synthesized for potential dual‐modal biological imaging. They were obtained by capping gadolinium oxide nanoparticles with a fluorescent glycol‐based conjugated carboxylate (H L ). The obtained nanoparticles (GO‐ L ) show long‐term colloidal stability and intense blue fluorescence. In addition, L can sensitize the luminescence of europium(III) through the so‐called antenna effect. Thus, to extend the spectral ranges of emission, europium was introduced into L‐ modified gadolinium oxide nanoparticles. The obtained EuIII‐doped particles (Eu:GO‐ L ) can provide visible red emission, which is more intensive than that without L capping. The average diameter of the monodisperse modified oxide cores is about 4 nm. The average hydrodynamic diameter of the L ‐modified nanoparticles was estimated to be about 13 nm. The nanoparticles show effective longitudinal water proton relaxivity. The relaxivity values obtained for GO‐ L and Eu:GO‐ L were r1=6.4 and 6.3 s?1 mM ?1 with r2/r1 ratios close to unity at 1.4 T. Longitudinal proton relaxivities of these nanoparticles are higher than those of positive contrast agents based on gadolinium complexes such as Gd‐DOTA, which are commonly used for clinical magnetic resonance imaging. Moreover, these particles are suitable for cellular imaging and show good biocompatibility.  相似文献   

7.
The loading of noble‐metal nanoparticles (NMNPs) onto various carriers to obtain stable and highly efficient catalysts is currently an important strategy in the development of noble metal (NM)‐based catalytic reactions and their applications. We herein report a nanowire supramolecular assembly constructed from the surfactant‐encapsulating polyoxometalates (SEPs) CTAB‐PW12, which can act as new carriers for NMNPs. In this case, the Ag NPs are loaded onto the SEP nanowire assembly with a narrow size distribution from 5 to 20 nm in diameter; the average size is approximately 10 nm. The Ag NPs on the nanowire assemblies are well stabilized and the over agglomeration of Ag NPs is avoided owing to the existence of well‐arranged polyoxometalate (POM) units in the SEP assembly and the hydrophobic surfactant on the surface of the nanowire assembly. Furthermore, the loading amount of the Ag NPs can be adjusted by controlling the concentration of the AgNO3 aqueous solution. The resultant Ag/CTAB‐PW12 composite materials exhibit high activity and good stability for the catalytic reduction of 4‐nitrophenol (4‐NP) with NaBH4 in isopropanol/H2O solution. The NMNPs‐loaded SEP nanoassembly may represent a new composite catalyst system for application in NM‐based catalysis.  相似文献   

8.
Controlling the synthesis of stable metal nanoparticles in water is a current challenge in nanochemistry. The strategy presented herein uses sulfonated N‐heterocyclic carbene (NHC) ligands to stabilize platinum nanoparticles (PtNPs) in water, under air, for an indefinite time period. The particles were prepared by thermal decomposition of a preformed molecular Pt complex containing the NHC ligand and were then purified by dialysis and characterized by TEM, high‐resolution TEM, and spectroscopic techniques. Solid‐state NMR studies showed coordination of the carbene ligands to the nanoparticle surface and allowed the determination of a 13C–195Pt coupling constant for the first time in a nanosystem (940 Hz). Additionally, in one case a novel structure was formed in which platinum(II) NHC complexes form a second coordination sphere around the nanoparticle.  相似文献   

9.
The use of graphene derivatives as supports improves the properties of heterogeneous catalysts, with graphene oxide (GO) being the most frequently employed. To explore greener possibilities as well as to get some insights into the role of the different graphenic supports (GO, rGO, carbon black, and graphite nanoplatelets), we prepared, under the same standard conditions, a variety of heterogeneous Cu catalysts and systematically evaluated their composition and catalytic activity in azide–alkyne cycloadditions as a model reaction. The use of sustainable graphite nanoplatelets (GNPs) afforded a stable CuI catalyst with good recyclability properties, which are compatible with flow conditions, and able to catalyze other reactions such as the regio‐ and stereoselective sulfonylation of alkynes (addition reaction) and the Meerwein arylation (single electron transfer process).  相似文献   

10.
This account provides an overview of current research activities on nanoparticles containing the earth‐abundant and inexpensive element copper (Cu) and Cu‐based nanoparticles, especially in the field of environmental catalysis. The different synthetic strategies with possible modification of the chemical/ physical properties of these nanoparticles using such strategies and/or conditions to improve catalytic activity are presented. The design and development of support and/or bimetallic systems (e. g., alloys, intermetallic, etc.) are also included. Herein, we report synthetic approaches of Cu and Cu‐based nanoparticles (monometallic copper, bimetallic copper and copper (II) oxide nanoparticles/nanostructures) and impregnation of such nanoparticles onto support material (e. g., Co3O4 nanostructure), along with their applications as environmental catalyst for various oxidation and reduction reactions. Finally, this account provides necessary advances and perspectives of Cu‐based nanoparticles in the environmental catalysis.  相似文献   

11.
A facile synthesis of highly stable, water‐dispersible metal‐nanoparticle‐decorated polymer nanocapsules (M@CB‐PNs: M=Pd, Au, and Pt) was achieved by a simple two‐step process employing a polymer nanocapsule (CB‐PN) made of cucurbit[6]uril (CB[6]) and metal salts. The CB‐PN serves as a versatile platform where various metal nanoparticles with a controlled size can be introduced on the surface and stabilized to prepare new water‐dispersible nanostructures useful for many applications. The Pd nanoparticles on CB‐PN exhibit high stability and dispersibility in water as well as excellent catalytic activity and recyclability in carbon–carbon and carbon–nitrogen bond‐forming reactions in aqueous medium suggesting potential applications as a green catalyst.  相似文献   

12.
To date, copper is the only monometallic catalyst that can electrochemically reduce CO2 into high value and energy‐dense products, such as hydrocarbons and alcohols. In recent years, great efforts have been directed towards understanding how its nanoscale structure affects activity and selectivity for the electrochemical CO2 reduction reaction (CO2RR). Furthermore, many attempts have been made to improve these two properties. Nevertheless, to advance towards applied systems, the stability of the catalysts during electrolysis is of great significance. This aspect, however, remains less investigated and discussed across the CO2RR literature. In this Minireview, the recent progress on understanding the stability of copper‐based catalysts is summarized, along with the very few proposed degradation mechanisms. Finally, our perspective on the topic is given.  相似文献   

13.
14.
Pores for improved catalysis: Mesoporous Pt nanoparticles (MPNs) with large surface areas are created within 10?min by a very simple, one-step, aqueous reaction at room temperature. The obtained MPNs exhibit significantly enhanced catalytic activity toward the methanol oxidation reaction.  相似文献   

15.
An efficient method for the preparation of enantiomerically enriched 1,1‐diarylalkyl units has been developed. The use of copper hydride complexed by the (R)‐1‐[(S)‐2‐diphenylphosphino)ferrocenyl]ethyldicyclohexylphosphine (Josiphos) ligand effects a highly enantioselective conjugate reduction of β,β‐diaryl‐substituted α,β‐unsaturated nitriles with aryl groups of similar steric demand and no secondary coordination site. A range of substrates with meta and para substituents on the aryl group were reduced with good to excellent enantioselectivities (up to 97 % enantiomeric excess (ee)) and this methodology was applied to the formal synthesis of indatraline.  相似文献   

16.
Copper nanoparticles with different structural properties and effective biological effects may be fabricated using new green protocols. The control over particle size and in turn size-dependent properties of copper nanoparticles is expected to provide additional applications. Various methods for the synthesis of copper nanoparticles have been reported including chemical methods, physical methods, biological methods, and green synthesis. Biological methods involve the use of plant extracts, bacteria, and fungi. Commendable work has been done regarding the synthesis and stability of copper nanoparticles. There is a need to summarize the behavior of copper nanoparticles in different media under various conditions. Here, a complete list of the literature on the synthesis of copper nanoparticles, their properties, stabilizing agents, factors affecting the morphology, and their applications is presented. The importance of copper nanoparticles compared to other metal nanoparticles are due to high conductivity. Methods for the synthesis of copper nanoparticles, including green protocols using plants and micro-organisms compared chemical methods, have also been reviewed.  相似文献   

17.
Water‐soluble gold nanoparticles (Au NPs) stabilized by a nitrogen‐rich poly(ethylene glycol) (PEG)‐tagged substrate have been prepared by reduction of HAuCl4 with NaBH4 in water at room temperature. The morphology and size of the nanoparticles can be controlled by simply varying the gold/stabilizer ratio. The nanoparticles have been fully characterized by TEM, high‐resolution (HR) TEM, electron diffraction (ED), energy‐dispersive X‐ray spectroscopy (EDS), UV/Vis, powder XRD, and elemental analysis. The material is efficient as a recyclable catalyst for the selective reduction of nitroarenes with NaBH4 to yield the corresponding anilines in water at room temperature. Furthermore, the potential ability of the Au NPs as a refractive index sensor owing to their localized surface plasmon resonance (LSPR) effect has also been assessed.  相似文献   

18.
Air‐/moisture‐stable, crystalline, and storable chiral salicyloxazoline based oxorhenium(V) complexes have been synthesized and their catalytic application for the asymmetric reduction of ketimines using hydrosilane as hydride source is disclosed. A broad substrate scope, high yields, and excellent enantioselectivities (up to 99 %) are attained. Furthermore, the syntheses of enantiopure α‐amino esters, γ‐ and δ‐lactams, and isoindolinones have also been carried out using this methodology. Finally, the method has been applied to synthetic targets of pharmaceutical relevance, such as R‐(+)‐salsolidine and R‐(+)‐crispine A.  相似文献   

19.
A facile and efficient two‐step synthesis of p‐substituted tris(2‐pyridylmethyl)amine (TPMA) ligands to form Cu complexes with the highest activity to date in atom transfer radical polymerization (ATRP) is presented. In the divergent synthesis, p‐Cl substituents in tris(4‐chloro‐2‐pyridylmethyl)amine (TPMA3Cl) were replaced in one step and high yield by electron‐donating cyclic amines (pyrrolidine (TPMAPYR), piperidine (TPMAPIP), and morpholine (TPMAMOR)) by nucleophilic aromatic substitution. The [CuII(TPMANR2)Br]+ complexes exhibited larger energy gaps between frontier molecular orbitals and >0.2 V more negative reduction potentials than [CuII(TPMA)Br]+, indicating >3 orders of magnitude higher ATRP activity. [CuI(TPMAPYR)]+ exhibited the highest reported activity for Br‐capped acrylate chain ends in DMF, and moderate activity toward C?F bonds at room temperature. ATRP of n‐butyl acrylate using only 10–25 part per million loadings of [CuII(TPMANR2)Br]+ exhibited excellent control.  相似文献   

20.
Highly disperse copper nanoparticles immobilized on carbon nanomaterials (CNMs; graphene/carbon nanotubes) were prepared and used as a recyclable and reusable catalyst to achieve CuI‐catalyzed [3+2] cycloaddition click chemistry. Carbon nanomaterials with immobilized N‐heterocyclic carbene (NHC)‐Cu complexes prepared from an imidazolium‐based carbene and CuI show excellent stability including high efficiency at low catalyst loading. The catalytic performance evaluated in solution and in bulk shows that both types of Cu‐CNMs can function as an effective recyclable catalysts (more than 10 cycles) for click reactions without decomposition and the use of external additives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号