首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a solution‐phase synthetic route to copper nanoparticles with controllable size and shape. The synthesis of the nanoparticles is achieved by the reduction of copper(II) salt in aqueous solution with hydrazine under air atmosphere in the presence of poly(acrylic acid) (PAA) as capping agent. The results suggest that the pH plays a key role for the formation of pure copper nanoparticles, whereas the concentration of PAA is important for controlling the size and geometric shape of the nanoparticles. The average size of the copper nanoparticles can be varied from 30 to 80 nm, depending on the concentration of PAA. With a moderate amount of PAA, faceted crystalline copper nanoparticles are obtained. The as‐synthesized copper nanoparticles appear red in color and are stable for weeks, as confirmed by UV/Vis and X‐ray photoemission (XPS) spectroscopy. The faceted crystalline copper nanoparticles serve as an effective catalyst for N‐arylation of heterocycles, such as the C? N coupling reaction between p‐nitrobenzyl chloride and morpholine producing 4‐(4‐nitrophenyl)morpholine in an excellent yield under mild reaction conditions. Furthermore, the nanoparticles are proven to be versatile as they also effectively catalyze the three‐component, one‐pot Mannich reaction between p‐substituted benzaldehyde, aniline, and acetophenone affording a 100 % conversion of the limiting reactant (aniline).  相似文献   

2.
PtSnZn nanosheet thin film with stable and high activity towards methanol electro‐oxidation was synthesized via a simple reduction of organometallic precursors including [PtCl2(cod)] (cod = cis,cis‐1,5‐cyclooctadiene) and [Sn(CH3)4] complexes, in the presence of [Zn(acac)2] (acac = acetylacetonate) complex at toluene–water interface. Catalytic activities of PtSnZn nanosheets were investigated in the p‐nitrophenol (p‐Nip) reduction and methanol oxidation reactions. The obtained results demonstrate that PtSnZn nanosheets exhibit a good electrocatalytic performance for methanol oxidation reaction, the catalytic activity of the PtSnZn nanosheets being at least 3.5 times higher than that of Pt nanoparticle thin film. Also, the apparent rate constant obtained for p‐Nip reduction with the PtSnZn nanosheets is at least 2.3 times higher than that for Pt nanoparticle thin film due to the appropriate interaction between platinum, tin and zinc metals and geometric properties of PtSnZn nanosheet thin film. Nanosheets are highly favourable for superior catalytic performances due to their geometric properties. A facile and efficient route was used to synthesize trimetallic alloy thin film at oil–water interface.  相似文献   

3.
An ionic liquid (i.e., 1‐butyl‐3‐methylimidazolium hexafluorophosphate, BMIMPF6)‐single‐walled carbon nanotube (SWNT) gel modified glassy carbon electrode (BMIMPF6‐SWNT/GCE) is fabricated. At it the voltammetric behavior and determination of p‐nitroaniline (PNA) is explored. PNA can exhibit a sensitive cathodic peak at ?0.70 V (vs. SCE) in pH 7.0 phosphate buffer solution on the electrode, resulting from the irreversible reduction of PNA. Under the optimized conditions, the peak current is linear to PNA concentration over the range of 1.0×10?8–7.0×10?6 M, and the detection limit is 8.0×10?9 M. The electrode can be regenerated by successive potential scan in a blank solution for about 5 times and exhibits good reproducibility. Meanwhile, the feasibility to determine other nitroaromatic compounds (NACs) with the modified electrode is also tested. It is found that the NACs studied (i.e., p‐nitroaniline, p‐nitrophenol, o‐nitrophenol, m‐nitrophenol, p‐nitrobenzoic acid, and nitrobenzene) can all cause sensitive cathodic peaks under the conditions, but their peak potentials and peak currents are different to some extent. Their peak currents and concentrations show linear relationships in concentration ranges with about 3 orders of magnitude. The detection limits are 8.0×10?9 M for p‐nitroaniline, 2.0×10?9 M for p‐nitrophenol, 5.0×10?9 M for o‐nitrophenol, 5.0×10?9 M for m‐nitrophenol, 2.0×10?8 M for p‐nitrobenzoic acid and 8.0×10?9 M for nitrobenzene respectively. The BMIMPF6‐SWNT/GCE is applied to the determination of NACs in lake water.  相似文献   

4.
A ligand design is proposed for transition metal nanoparticle (TMNP) catalysts in aqueous solution. Thus, a tris(triazolyl)‐polyethylene glycol (tris‐trz‐PEG) amphiphilic ligand, 2 , is used for the synthesis of very small TMNPs with Fe, Co, Ni, Cu, Ru, Pd, Ag, Pt, and Au. These TMNP‐ 2 catalysts were evaluated and compared for the model 4‐nitrophenol reduction, and proved to be extremely efficient. High catalytic efficiencies involving the use of only a few ppm metal of PdNPs, RuNPs, and CuNPs were also exemplified in Suzuki–Miyaura, transfer hydrogenation, and click reactions, respectively.  相似文献   

5.
Self‐assembly of the naturally occurring sweetening agent, glycyrrhizic acid (GA) in water is studied by small‐angle X‐ray scattering and microscopic techniques. Statistical analysis on atomic force microscopy images reveals the formation of ultralong GA fibrils with uniform thickness of 2.5 nm and right‐handed twist with a pitch of 9 nm, independently of GA concentration. Transparent nematic GA hydrogels are exploited to create functional hybrid materials. Two‐fold and three‐fold hybrids are developed by introducing graphene oxide (GO) and in situ‐synthesized gold nanoparticles (Au NPs) in the hydrogel matrix for catalysis applications. In the presence of GO, the catalytic efficiency of Au NPs in the reduction of p‐nitrophenol to p‐aminophenol is enhanced by 2.5 times. Gold microplate single crystals are further synthesized in the GA hydrogel, expanding the scope of these hybrids and demonstrating their versatility in materials design.  相似文献   

6.
Nitrophenols are among the widely used industrial chemicals worldwide; however, their hazardous effects on environment are a major concern nowadays. Therefore, the conversion of environmentally detrimental p‐nitrophenol (PNP) to industrially valuable p‐aminophenol (PAP), a prototype reaction, is an important organic transformation reaction. However, the traditional conversion of PNP to PAP is an expensive and environmentally unfriendly process. Here, we report a honeycomb‐like porous network with zeolite‐like channels formed by the self‐organization of copper, 1,10‐phenanthroline, 4,4′‐bipyridine, and water. This porous network effectively catalyzed the transformation of hazardous PNP to pharmaceutically valued PAP. In the presence of complex, PNP to PAP conversion occurred in a few minutes, which is otherwise a very sluggish process. To assess the kinetics, the catalytic conversion of PNP to PAP was studied at five different temperatures. The linearity of lnCt/Co versus temperature plot indicated pseudo‐first‐order kinetics. The copper complex with zeolite like channels may find applications as a reduction catalyst both on laboratory and industrial scales and in green chemistry for the remediation of pollutants.  相似文献   

7.
D‐glucosamine Schiff base N‐(2‐deoxy‐β‐D‐glucopyranosyl‐2‐salicylaldimino) and its Cu(II) and Zn(II) complexes were synthesized and characterized. The hydrolysis of p‐nitrophenyl picolinate (PNPP) catalyzed by ligand and complexes was investigated kinetically by observing the rates of the release of p‐nitrophenol in the aqueous buffers at 25°C and different pHs. The scheme for reaction acting mode involving a ternary complex composed of ligand, metal ion, and substrate was established and the reaction mechanisms were discussed by metal–hydroxyl and Lewis acid mechanisms. The experimental results indicated that the complexes, especially the Cu(II) complex, efficiently catalyzed the hydrolysis of PNPP. The catalytic reactivity of the Zn(II) complex was much smaller than the Cu(II) complex. The rate constant kN showing the catalytic reactivity of the Cu(II) complex was determined to be 0.299 s?1 (at pH 8.02) in the buffer. The pKa of hydroxyl group of the ternary complex was determined to be 7.86 for the Cu(II) complex. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 345–350, 2002  相似文献   

8.
Gold nanoparticles were decorated onto sulfonated three‐dimensional graphene (3DG‐SO3H) through spontaneous chemical reduction of HAuCl4 by 3DG‐SO3H. This nanocomposite exhibited excellent catalytic activity for the synthesis of symmetric biaryls via the Ullmann homocoupling of aryl iodides in an aqueous medium. Additionally, this nanocomposite was used as a catalyst for the reduction of p‐nitrophenol to p‐aminophenol. The catalyst could be used more than six times successively without significant deactivation.  相似文献   

9.
Synthesis of copper nanoparticles was carried out with nanocrystalline cellulose (NCC) as a support by reducing CuSO4·5H2O ions using hydrazine. Ascorbic acid and aqueous NaOH were also used as an antioxidant and pH controller, respectively. The synthesized copper nanoparticles supported on NCC (CuNPs@NCC) were characterized by UV–vis, XRD, TEM, XRF, TGA, DSC, N2 adsorption-desorption method at 77 K and FTIR. The UV–vis confirmed the formation and stability of the CuNPs, which indicated that the maximum absorbance of CuNPs@NCC was at 590 nm due to the surface plasmon absorption of CuNPs. Morphological characterization clearly showed the formation of a spherical structure of the CuNPs with the mean diameter and standard deviation of 2.71 ± 1.12 nm. Similarly, XRD showed that the synthesized CuNPs@NCC was of high purity. The thermal analysis showed that the CuNPs@NCC exhibited better thermal behaviors than NCC. BET surface area revealed that the N2 adsorption–desorption isotherms of CuNPs@NCC featured a type IV isotherm with an H3 hysterisis loop. This chemical method is simple, cost effective, and environmentally friendly. Compared to NCC-supported CuNPs and unsupported CuNPs, the as-prepared CuNPs@NCC exhibit a superior catalytic activity and high sustainability for the reduction of methylene blue with NaBH4 in aqueous solution at room temperature. The CuNPs@NCC achieved complete reduction of MB with completion time, rate constant and correlation coefficient (R 2) of 12 min, 0.7421 min?1 and 0.9922, respectively.  相似文献   

10.
Cobalt oxide nanostructure (CoOxNS) deposited on the glassy carbon (GC) electrode surface is proposed as a novel electrocatalytic system for the reduction of para‐Nitrophenol. Cyclic voltammetry, electrochemical impedance spectroscopy, atomic force microscopy and scanning electron microscopy were used for characterization of deposited CoOxNS. CoOxNS deposited by cycling at positive potentials (0 to +1.3 V) show less charge‐transfer resistance (Rct) and more catalytic activity for the electroreduction of p‐nitrophenol compared to those CoOxNS obtained by scanning the applied potential throughout a negative V range. The GC/CoOxNS electrode showed good electrocatalytic activity toward the reduction of p‐nitrophenol at different pH values.  相似文献   

11.
Copper p‐toluenesulfonate acetic acid has been established as an efficient combined catalytic system for chemoselective conversion of aldehydes to diacetates in high yields at ambient temperature in short reaction times. For the catalytic system, the amount of copper p‐toluenesulfonate reduced to 0.3 mol%. After the reaction, copper p‐toluenesulfonate can be easily recovered and reused for at least 10 runs.  相似文献   

12.
The successful coating of thin porous silica layers of various thicknesses [(10±1), (12±1), and (14±1) nm] on cetyl trimethylammonium bromide (CTAB) capped gold nanorods was achieved through a modified Stöber procedure. The resulting material was applied as a novel catalyst for the reduction of 4‐nitrophenol. The catalytic activities of the gold nanorods increased up to eight times after coating with a layer of porous silica and the reaction followed a zero‐order kinetics, having a rate constant as high as 2.92×10?1 mol L?1 min?1. The spectral changes during the reduction reaction of 4‐nitrophenol were observed within a very short span of time and a complete conversion to 4‐aminophenol occured within 5–6 mins, including the induction period of ≈2 mins. The reusability of the catalyst was studied by running the catalytic reaction during five consecutive cycles with good efficiency without destroying the nanostructure. The methodology can be effectively applied to the development of composite catalysts with highly enhanced catalytic activity.  相似文献   

13.
Tamarind nut powder (TNP) from kitchen waste of tamarind nuts was modified with in situ generated copper nanoparticles (CuNPs) using hydrothermal method. The modified TNP had spherical CuNPs with an average size of 84?nm. The thermal stability of the modified TNP was lower than that of the TNP due to the catalytic activity of the in situ generated CuNPs in lowering the thermal stability. Further, it exhibited significant antibacterial activity against both the Gram negative and Gram positive bacteria and hence can be used as low-cost filler to prepare antibacterial hybrid polymer nanocomposites for packaging and medical applications.  相似文献   

14.
Nearly monodisperse poly(N ‐isopropylacrylamide‐co ‐acrylamide) [P(NIPAM‐co‐AAm)] microgels were synthesized using precipitation polymerization in aqueous medium. These microgels were used as microreactors to fabricate silver nanoparticles by chemical reduction of silver ions inside the polymer network. The pure and hybrid microgels were characterized using Fourier transform infrared and UV–visible spectroscopies, dynamic light scattering, X‐ray diffraction, thermogravimetric analysis, differential scanning calorimetry and transmission electron microscopy. Results revealed that spherical silver nanoparticles having diameter of 10–20 nm were successfully fabricated in the poly(N ‐isopropylacrylamide‐co ‐acrylamide) microgels with hydrodynamic diameter of 250 ± 50 nm. The uniformly loaded silver nanoparticles were found to be stable for long time due to donor–acceptor interaction between amide groups of polymer network and silver nanoparticles. Catalytic activity of the hybrid system was tested by choosing the catalytic reduction of 4‐nitrophenol as a model reaction under various conditions of catalyst dose and concentration of NaBH4 at room temperature in aqueous medium to explore the catalytic process. The progress of the reaction was monitored using UV–visible spectrophotometry. The pseudo first‐order kinetic model was employed to evaluate the apparent rate constant of the reaction. It was found that the apparent rate constant increased with increasing catalyst dose due to an increase of surface area as a result of an increase in the number of nanoparticles.  相似文献   

15.
Development of highly active and recyclable catalysts for selective hydrogenation of nitroarenes to amines in water at room temperature is always a challenge in chemical industry. This study reports a facile in situ method for synthesis of ultrafine palladium and platinum nanoparticles (NPs) stabilized by poly (amic acid) salt (PAAS) and their potential as catalysts for hydrogenation of nitroarenes with sodium borohydride or molecular hydrogen as reductant in water at room temperature. In the reduction of 4‐nitrophenol to 4‐aminophenol by sodium borohydride, the activity parameters of PdNPs–PAAS and PtNPs–PAAS catalyst is 6.66 × 103 and 5.58 × 103 s?1 M?1 respectively. In the hydrogenation of diverse nitroarenes under atmospheric hydrogen pressure, PdNPs–PAAS shows high activity but poor selectivity toward desired amines in some cases, while PtNPs–PAAS shows both high activity and high selectivity for selective hydrogenation of nitroarenes to corresponding anilines. The high efficiency of nanocatalyst is due to the quasi‐homogeneous dispersion of metal NPs and synergistic effects between metal NPs and PAAS. In addition, nanocatalyst can be easily recovered with pH‐sensibility of PAAS and reused at least six times without significant loss of catalytic activities.  相似文献   

16.
Copper nanoparticles (CuNPs) have been deeply studied as catalyst for organic synthesis. Various new Cu nanocatalysts are reviewed for different types of organic reactions, such as C–C bond formation (including Mizoroki–Heck, Suzuki–Miyaura, Glaser-Hay coupling), C–N bond formation (including Chan-Lam, Buchwald–Hartwig, Ullmann and Goldberg coupling, alkyne–azide cycloaddition etc.), C–O bond formation and multi-step reactions with C–X (C, N, O) bond formation. Most CuNP-catalyzed protocols possess merits of mild reaction conditions, high catalytic efficiency, good functional group tolerance, lower cost, clean reaction profiles and reusable copper catalyst. The application of these CuNPs in organic synthesis holds potential for significant impact on advancing organic synthesis and promoting further development of organic copper chemistry.  相似文献   

17.
Recently, scientist have used metallic nanoparticles for synthesizing many new drugs in the field of neurology. One of the metals used in the metallic nanoparticles is copper. The role of Achillea biebersteinii in increasing the physiological activities of central nervous system in Iranian traditional medicine is well known. In this study fresh leaves of A. biebersteinii were used for the biosynthesis of copper nanoparticles. We also assessed the effect of copper nanoparticles on methamphetamine-induced cell death in the PC12 cell line. The nanoparticles were analyzed by Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, field emission scanning electron microscopy, and ultraviolet–visible spectroscopy. A 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging experiment was carried out to assess the antioxidant properties of Cu(NO3)2, A. biebersteinii, and CuNPs. The DPPH test revealed similar antioxidant activities for A. biebersteinii, CuNPs, and butylated hydroxytoluene. In the cellular and molecular part of the present study, the Trypan blue test was performed to assess cell viability. The terminal deoxynucleotidyl transferase 2′-Deoxyuridine, 5′-Triphosphate (dUTP) nick end labeling test clarified the DNA fragmentation and apoptosis occurrence. The Griess reaction was used to measure nitric oxide production and caspase-3 activity was evaluated by spectrophotometry. The obtained results were fed into SPSS-22 software and analyzed by one-way ANOVA, followed by Tukey's post hoc test (p ≤ 0.01). The results indicate that both doses of CuNPs had cell death-suppressing effects on nerve cells. In particular, both doses of CuNPs significantly (p ≤ 0.01) increased cell viability and NO production, and decreased cell cytotoxicity, cell death index, and caspase-3 activity near the normal. According to these results, it seems that CuNPs could be administrated as a neuroprotective supplement or drug for the treatment of central nervous system disorders in clinical trials.  相似文献   

18.
19.
The growing concern about the potentially adverse effects of the production of chemical compounds on the sustainable development of the environment has led to a great deal of efforts to search for low‐cost and environmentally friendly catalytic systems. A pyrene‐tagged N‐heterocyclic carbene palladacycle complex ([Pd{(C,N)C6H4CH2NH(Et)}(Imd‐P)Br]) was prepared by reacting imidazolium salt with dimer ([Pd2{(C,N)C6H4CH2NH(Et)}2(μ‐OAc)2]). Then, it was immobilized onto the surface of reduced graphene oxide (rGO) via π–π stacking forces. The hybrid compound ((NHC)Pd‐rGO) was made in a one‐step process. Various techniques were employed to characterize the compound. In addition, computational studies were used to verify the interaction between the Pd complex and rGO. The catalytic activity of the molecular complex and hybrid material was evaluated in both Suzuki–Miyaura cross‐coupling reactions and reduction of p‐nitrophenol to p‐aminophenol. The catalytic activity of the hybrid material was enhanced in comparison with the corresponding homogeneous analogue. Thus, rGO seems to play a significant role in catalytic activity. Hot filtration experiments show the heterogeneous nature of the catalyst resulting from the strong interaction between pyrene and graphene. The hybrid (NHC)Pd‐rGO material could be recycled up to six times with no decrease in catalytic activity.  相似文献   

20.
pt‐Butyl calix[4]arene diol (distal cone) (1) was grafted with poly (acrylic acid) (PAA) to obtain hydrophobically modified PAA (PAA‐C) bearing calixarene moieties. The grafting method includes the direct esterification reaction of PAA with calixarene diol 1 which was carried out in a system of tosyl chloride (TsCl), pyridine (Py), and N,N‐dimethylformamide (DMF). The grafting yield was studied using different molar ratios of PAA to calix[4]arene diol 1, temperature, and reaction time. The chemical composition of the PAA‐C was studied by IR and 1H NMR spectroscopy. Also, the morphology of PAA‐C was evaluated by scanning electron microscopy. The PAA‐C had different solubility and thermal properties. The extraction ability measurements of modified PAA toward alkali metal cations (Na+, K+, Cs+) and Ag+ showed a remarkable efficiency and selectivity of PAA‐C toward Na+. The main goal of this work was to design hydrophobically modified PAA with binding ability that is suitable for ion selective membranes and chemical sensor devices such as ion‐specific electrodes, semipermeable membranes, and quartz microbalances. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号