首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The amino substituted bidentate chelating ligand 2‐amino‐5‐(2‐pyridyl)‐1,3,4‐thiadiazole (H2 L ) was used to prepare 3:1‐type coordination compounds of iron(II), cobalt(II) and nickel(II). In the iron(II) perchlorate complex [FeII(H2 L )3](ClO4)2·0.6MeOH·0.9H2O a 1:1 mixture of mer and fac isomers is present whereas [FeII(H2 L )3](BF4)2·MeOH·H2O, [CoII(H2 L )3](ClO4)2·2H2O and [NiII(H2 L )3](ClO4)2·MeOH·H2O feature merely mer derivatives. Moessbauer spectroscopy and variable temperature magnetic measurements revealed the [FeII(H2 L )3]2+ complex core to exist in the low‐spin state, whereas the [CoII(H2 L )3]2+ complex core resides in its high‐spin state, even at very low temperatures.  相似文献   

2.
Simultaneous incorporation of both CoII and CoIII ions within a new thioether S‐bearing phenol‐based ligand system, H3L (2,6‐bis‐[{2‐(2‐hydroxyethylthio)ethylimino}methyl]‐4‐methylphenol) formed [Co5] aggregates [CoIICoIII4L2(μ‐OH)2(μ1,3‐O2CCH3)2](ClO4)4?H2O ( 1 ) and [CoIICoIII4L2(μ‐OH)2(μ1,3‐O2CC2H5)2](ClO4)4?H2O ( 2 ). The magnetic studies revealed axial zero‐field splitting (ZFS) parameter, D/hc=?23.6 and ?24.3 cm?1, and E/D=0.03 and 0.00, respectively for 1 and 2 . Dynamic magnetic data confirmed the complexes as SIMs with Ueff/kB=30 K ( 1 ) and 33 K ( 2 ), and τ0=9.1×10?8 s ( 1 ), and 4.3×10?8 s ( 2 ). The larger atomic radius of S compared to N gave rise to less variation in the distortion of tetrahedral geometry around central CoII centers, thus affecting the D and Ueff/kB values. Theoretical studies also support the experimental findings and reveal the origin of the anisotropy parameters. In solutions, both 1 and 2 which produce {CoIII2(μ‐L)} units, display solvent‐dependent catechol oxidation behavior toward 3,5‐di‐tert‐butylcatechol in air. The presence of an adjacent CoIII ion tends to assist the electron transfer from the substrate to the metal ion center, enhancing the catalytic oxidation rate.  相似文献   

3.
《化学:亚洲杂志》2017,12(5):507-514
Five hexanuclear lanthanide clusters of composition [Ln64‐O)2(HCOO)2L4(HL′)2(dmf)2] [Ln=Dy ( 1 ), Er ( 2 ), Ho ( 3 ), Tb ( 4 ), Gd ( 5 ); H2L=2‐{[2‐(hydroxymethyl)phenylimino]methyl}‐6‐methoxyphenol; H3L′=3‐{[2‐(hydroxymethyl)phenylimino]methyl}benzene‐1,2‐diol; H3L′ was derived in situ from the H2L ligand] were prepared under solvothermal conditions. The [Ln6] cores of 1 – 5 possess an unprecedented motif, namely, two tetrahedron Ln4 units sharing an edge and two vertices. The six LnIII ions of 1 – 5 are connected through two μ4‐O anions. Magnetic susceptibility studies reveal that complex 1 exhibits frequency dependence of the alternating current susceptibility typical of single‐molecule magnets. Complex 1 possesses a relatively large energy barrier of 85 K among all of the reported Dy6 single‐molecule magnets.  相似文献   

4.
The cyanide building block [FeIII(pzphen)(CN)4] and its four lanthanide complexes [{FeIII(pzphen)(CN)4}2LnIII(H2O)5(DMF)3] · (NO3) · 2(H2O) · (CH3CN) [Ln = Nd ( 1 ), Sm ( 2 ), DMF = dimethyl formamide] and [{FeIII(pzphen)(CN)4}2LnIII(NO3)(H2O)2(DMF)2](CH3CN) [Ln = Gd ( 3 ), Dy ( 4 )] were synthesized and structurally characterized by single‐crystal X‐ray diffraction. Compounds 1 and 2 are ionic salts with two [FeIII(pzphen)(CN)4] cations and one LnIII ion, but compounds 3 and 4 are cyano‐bridged FeIIILnIII heterometallic 3d‐4f complexes exhibiting a trinuclear structure in the same conditions. Magnetic studies show that compound 3 is antiferromagnetic between the central FeIII and GdIII atoms. Furthermore, the trinuclear cyano‐bridged FeIII2DyIII compound 4 displays no single‐molecular magnets (SMMs) behavior by the alternating current magnetic susceptibility measurements.  相似文献   

5.
Two series of isostructural C3‐symmetric Ln3 complexes Ln3 ? [BPh4] and Ln3 ? 0.33[Ln(NO3)6] (in which LnIII=Gd and Dy) have been prepared from an amino‐bis(phenol) ligand. X‐ray studies reveal that LnIII ions are connected by one μ2‐phenoxo and two μ3‐methoxo bridges, thus leading to a hexagonal bipyramidal Ln3O5 bridging core in which LnIII ions exhibit a biaugmented trigonal‐prismatic geometry. Magnetic susceptibility studies and ab initio complete active space self‐consistent field (CASSCF) calculations indicate that the magnetic coupling between the DyIII ions, which possess a high axial anisotropy in the ground state, is very weakly antiferromagnetic and mainly dipolar in nature. To reduce the electronic repulsion from the coordinating oxygen atom with the shortest Dy?O distance, the local magnetic moments are oriented almost perpendicular to the Dy3 plane, thus leading to a paramagnetic ground state. CASSCF plus restricted active space state interaction (RASSI) calculations also show that the ground and first excited state of the DyIII ions are separated by approximately 150 and 177 cm?1, for Dy3 ? [BPh4] and Dy3 ? 0.33[Dy(NO3)6], respectively. As expected for these large energy gaps, Dy3 ? [BPh4] and Dy3 ? 0.33[Dy(NO3)6] exhibit, under zero direct‐current (dc) field, thermally activated slow relaxation of the magnetization, which overlap with a quantum tunneling relaxation process. Under an applied Hdc field of 1000 Oe, Dy3 ? [BPh4] exhibits two thermally activated processes with Ueff values of 34.7 and 19.5 cm?1, whereas Dy3 ? 0.33[Dy(NO3)6] shows only one activated process with Ueff=19.5 cm?1.  相似文献   

6.
By using the node‐and‐spacer approach in suitable solvents, four new heterotrimetallic 1D chain‐like compounds (that is, containing 3d–3d′–4f metal ions), {[Ni(L)Ln(NO3)2(H2O)Fe(Tp*)(CN)3] ? 2 CH3CN ? CH3OH}n (H2L=N,N′‐bis(3‐methoxysalicylidene)‐1,3‐diaminopropane, Tp*=hydridotris(3,5‐dimethylpyrazol‐1‐yl)borate; Ln=Gd ( 1 ), Dy ( 2 ), Tb ( 3 ), Nd ( 4 )), have been synthesized and structurally characterized. All of these compounds are made up of a neutral cyanide‐ and phenolate‐bridged heterotrimetallic chain, with a {? Fe? C?N? Ni(? O? Ln)? N?C? }n repeat unit. Within these chains, each [(Tp*)Fe(CN)3]? entity binds to the NiII ion of the [Ni(L)Ln(NO3)2(H2O)]+ motif through two of its three cyanide groups in a cis mode, whereas each [Ni(L)Ln(NO3)2(H2O)]+ unit is linked to two [(Tp*)Fe(CN)3]? ions through the NiII ion in a trans mode. In the [Ni(L)Ln(NO3)2(H2O)]+ unit, the NiII and LnIII ions are bridged to one other through two phenolic oxygen atoms of the ligand (L). Compounds 1 – 4 are rare examples of 1D cyanide‐ and phenolate‐bridged 3d–3d′–4f helical chain compounds. As expected, strong ferromagnetic interactions are observed between neighboring FeIII and NiII ions through a cyanide bridge and between neighboring NiII and LnIII (except for NdIII) ions through two phenolate bridges. Further magnetic studies show that all of these compounds exhibit single‐chain magnetic behavior. Compound 2 exhibits the highest effective energy barrier (58.2 K) for the reversal of magnetization in 3d/4d/5d–4f heterotrimetallic single‐chain magnets.  相似文献   

7.
The self‐assembly of DyIII–3‐hydroxypyridine (3‐OHpy) complexes with hexacyanidocobaltate(III) anions in water produces cyanido‐bridged {[DyIII(3‐OHpy)2(H2O)4] [CoIII(CN)6]}?H2O ( 1 ) chains. They reveal a single‐molecule magnet (SMM) behavior with a large zero direct current (dc) field energy barrier, ΔE=266(12) cm?1 (≈385 K), originating from the single‐ion property of eight‐coordinated DyIII of an elongated dodecahedral geometry, which are embedded with diamagnetic [CoIII(CN)6]3? ions into zig‐zag coordination chains. The SMM character is enhanced by the external dc magnetic field, which results in the ΔE of 320(23) cm?1 (≈460 K) at Hdc=1 kOe, and the opening of a butterfly hysteresis loop below 6 K. Complex 1 exhibits white DyIII‐based emission realized by energy transfer from CoIII and 3‐OHpy to DyIII. Low temperature emission spectra were correlated with SMM property giving the estimation of the zero field ΔE. 1 is a unique example of bifunctional magneto‐luminescent material combining white emission and slow magnetic relaxation with a large energy barrier, both controlled by rich structural and electronic interplay between DyIII, 3‐OHpy, and [CoIII(CN)6]3?.  相似文献   

8.
Investigating the coordination chemistry of H2CDA (4‐oxo‐1,4‐dihydro‐2,6‐pyridinedicarboxylic acid) with rare earth salts Ln(NO3)3 under hydrothermal conditions, structure transformation phenomenon was observed. The ligand, H2CDA charged to its position isomer, enol type structure, H3CAM (4‐hydroxypyridine‐2,6‐dicarboxylic acid). Six new lanthanide(III) coordination polymers with the formulas [Ln(CAM)(H2O)3]n [Ln = La ( 1 ), Pr, ( 2 )] and {[Ln(CAM)(H2O)3] · H2O}n [Ln = Nd, ( 3 ), Sm, ( 4 ), Eu, ( 5 ), Y, ( 6 )] were synthesized and characterized. The X‐ray structure analyses show two kinds of coordination structures. The complexes 1 and 2 and 3 – 6 are isostructural. Complexes 1 and 2 crystallize in the monoclinic C2/c space group, whereas 3 – 6 crystallize in the monoclinic system with space group P21/n. In the two kinds of structures, H3CAM displays two different coordination modes. The SmIII and EuIII complexes exhibit the corresponding characteristic luminescence in the visible region at an excitation of 376 nm.  相似文献   

9.
Herein, a unique coordination system that exhibits multiple chiral inversions and molecular dimerization in response to a subtle pH change is reported. Treatment of (Δ)2‐H3[Au3Co2(L ‐cys)6] (H3[ 1 a ]) with [Co3(aet)6](NO3)3 (aet=2‐aminoethanethiolate) in water at pH 7 gave a 1:1 complex salt of [Co3(aet)6]3+ and [ 1 a ]3?, retaining the AuI3CoIII2 structure and chiral configurations of [ 1 a ]3?. Similar treatment at pH 9 led to not only the inversion of all of the chiral CoIII and S centers but also the dimerization of [ 1 a ]3?, giving a 2:1 complex salt of [Co3(aet)6]3+ and (Λ)4(R)12‐[Au6Co4(L ‐cys)12]6? ([ 2 ]6?). When dissociated from [Co3(aet)6]3+ in solution, [ 2 ]6? was converted to (Λ)2(R)6‐[Au3Co2(L ‐cys)6]3? ([ 1 b ]3?) with retention of the chiral configurations.  相似文献   

10.
In acetate buffer media (pH 4.5–5.4) thiosulfate ion (S2O32?) reduces the bridged superoxo complex, [(NH3)4CoIII(μ‐NH2,μ‐O2)CoIII(NH3)4]4+ ( 1 ) to its corresponding μ‐peroxo product, [(NH3)4CoIII(μ‐NH2,μ‐O2)CoIII(NH3)4]3+ ( 2 ) and along a parallel reaction path, simultaneously S2O32? reacts with 1 to produce the substituted μ‐thiosulfato‐μ‐superoxo complex, [(NH3)4CoIII(μ‐S2O3,μ‐O2)CoIII(NH3)4]3+ ( 3 ). The formation of μ‐thiosulfato‐μ‐superoxo complex ( 3 ) appears as a precipitate which on being subjected to FTIR shows absorption peaks that support the presence of Co(III)‐bound S‐coordinated S2O32? group. In reaction media, 3 readily dissolves to further react with S2O32? to produce μ‐thiosulfato‐μ‐peroxo product, [(NH3)4CoIII(μ‐S2O3,μ‐O2)CoIII(NH3)4]2+ ( 4 ). The observed rate (k0) increases with an increase in [TThio] ([TThio] is the analytical concentration of S2O32?) and temperature (T), but it decreases with an increase in [H+] and the ionic strength (I). Analysis of the log At versus time data (A is the absorbance of 1 at time t) reveals that overall the reaction follows a biphasic consecutive reaction path with rate constants k1 and k2 and the change of absorbance is equal to {a1 exp(–k1t) + a2 exp(–k2t)}, where k1 > k2.  相似文献   

11.
The tetrathiafulvalene‐amido‐2‐pyridine‐N‐oxide ( L ) ligand has been employed to coordinate 4f elements. The architecture of the complexes mainly depends on the ionic radii of the lanthanides. Thus, the reaction of L in the same experimental protocol leads to three different molecular structure series. Binuclear [Ln2(hfac)5(O2CPhCl)( L )3] ? 2 H2O (hfac?=1,1,1,5,5,5‐hexafluoroacetylacetonate anion, O2CPhCl?=3‐chlorobenzoate anion) and mononuclear [Ln(hfac)3( L )2] complexes were obtained by using rare‐earth ions with either large (LnIII=Pr, Gd) or small (LnIII=Y, Yb) ionic radius, respectively, whereas the use of TbIII that possesses an intermediate ionic radius led to the formation of a binuclear complex of formula [Tb2(hfac)4(O2CPhCl)2( L )2]. Antiferromagnetic interactions have been observed in the three dinuclear compounds by using an extended empirical method. Photophysical properties of the coordination complexes have been studied by solid‐state absorption spectroscopy, whereas time‐dependent density functional theory (TD‐DFT) calculations have been carried out on the diamagnetic YIII derivative to build a molecular orbital diagram and to reproduce the absorption spectrum. For the [Yb(hfac)3( L )2] complex, the excitation at 19 600 cm?1 of the HOMO→LUMO+1/LUMO+2 charge‐transfer transition induces both line‐shape emissions in the near‐IR spectral range assigned to the 2F5/22F7/2 (9860 cm?1) ytterbium‐centered transition and a residual charge‐transfer emission around 13 150 cm?1. An efficient antenna effect that proceeds through energy transfer from the singlet excited state of the tetrathiafulvalene‐amido‐2‐pyridine‐N‐oxide chromophore is evidence of the YbIII sensitization.  相似文献   

12.
A diamagnetic AuI4CoIII2 hexanuclear complex, [Au4Co2(dppe)2(l ‐nmc)4]2+ ([ 1L ‐ nmc ]2+; dppe=1,2‐bis(diphenylphosphino)ethane, l ‐H2nmc=N‐methyl‐l ‐cysteine), was newly synthesized by the reaction of [Co(l ‐nmc)2]? with [Au2Cl2(dppe)] and crystallized with different inorganic anions (X=ClO4?, NO3?, Cl?, SO42?) to produce ionic solids ([ 1L ‐ nmc ]Xn). Single‐crystal X‐ray analysis revealed that all the solids crystallize in the chiral space group F432 with a face‐centered‐cubic lattice structure consisting of supramolecular octahedra of complex cations. The paramagnetic nature of all the solids was evidenced by magnetic susceptibility measurements, showing the variation of the oxidation states of two cobalt centers in [ 1L ‐ nmc ]n+ from CoII1.00CoIII1.00 for X=ClO4? or NO3? to CoII0.67CoIII1.33 for X=Cl?, via CoII0.83CoIII1.17 for X=SO42?. The difference in the CoII/III mixed‐valences was explained by the difference in sizes and charges of counter anions accommodated in lattice interstices with a fixed volume.  相似文献   

13.
The complex series [Ru(pap)(Q)2]n ([ 1 ]n–[ 4 ]n; n=+2, +1, 0, ?1, ?2) contains four redox non‐innocent entities: one ruthenium ion, 2‐phenylazopyridine (pap), and two o‐iminoquinone moieties, Q=3,5‐di‐tert‐butyl‐N‐aryl‐1,2‐benzoquinonemonoimine (aryl=C6H5 ( 1+ ); m‐(Cl)2C6H3 ( 2+ ); m‐(OCH3)2C6H3 ( 3+ ); m‐(tBu)2C6H3 ( 4 +)). A crystal structure determination of the representative compound, [ 1 ]ClO4, established the crystallization of the ctt‐isomeric form, that is, cis and trans with respect to the mutual orientations of O and N donors of two Q ligands, and the coordinating azo N atom trans to the O donor of Q. The sensitive C? O (average: 1.299(3) Å), C? N (average: 1.346(4) Å) and intra‐ring C? C (meta; average: 1.373(4) Å) bond lengths of the coordinated iminoquinone moieties in corroboration with the N?N length (1.292(3) Å) of pap in 1 + establish [RuIII(pap0)(Q.?)2]+ as the most appropriate electronic structural form. The coupling of three spins from one low‐spin ruthenium(III) (t2g5) and two Q.? radicals in 1 +– 4 + gives a ground state with one unpaired electron on Q.?, as evident from g=1.995 radical‐type EPR signals for 1 +– 4 +. Accordingly, the DFT‐calculated Mulliken spin densities of 1 + (1.152 for two Q, Ru: ?0.179, pap: 0.031) confirm Q‐based spin. Complex ions 1 +– 4 + exhibit two near‐IR absorption bands at about λ=2000 and 920 nm in addition to intense multiple transitions covering the visible to UV regions; compounds [ 1 ]ClO4–[ 4 ]ClO4 undergo one oxidation and three separate reduction processes within ±2.0 V versus SCE. The crystal structure of the neutral (one‐electron reduced) state ( 2 ) was determined to show metal‐based reduction and an EPR signal at g=1.996. The electronic transitions of the complexes 1 n– 4 n (n=+2, +1, 0, ?1, ?2) in the UV, visible, and NIR regions, as determined by using spectroelectrochemistry, have been analyzed by TD‐DFT calculations and reveal significant low‐energy absorbance (λmax>1000 nm) for cations, anions, and neutral forms. The experimental studies in combination with DFT calculations suggest the dominant valence configurations of 1 n– 4 n in the accessible redox states to be [RuIII(pap0)(Q.?)(Q0)]2+ ( 1 2+– 4 2+)→[RuIII(pap0)(Q.?)2]+ ( 1 +– 4 +)→[RuII(pap0)(Q.?)2] ( 1 – 4 )→[RuII(pap.?)(Q.?)2]? ( 1 ?– 4 ?)→[RuIII(pap.?)(Q2?)2]2? ( 1 2?– 4 2?).  相似文献   

14.
A mononuclear‐cobalt(II)‐substituted silicotungstate, K10[Co(H2O)2(γ‐SiW10O35)2] ? 23 H2O (POM‐ 1 ), has been evaluated as a light‐driven water‐oxidation catalyst. With in situ photogenerated [Ru(bpy)3]3+ (bpy=2,2′‐bipyridine) as the oxidant, quite high catalytic turnover number (TON; 313), turnover frequency (TOF; 3.2 s?1), and quantum yield (ΦQY; 27 %) for oxygen evolution at pH 9.0 were acquired. Comparison experiments with its structural analogues, namely [Ni(H2O)2(γ‐SiW10O35)2]10? (POM‐ 2 ) and [Mn(H2O)2(γ‐SiW10O35)2]10? (POM‐ 3 ), gave the conclusion that the cobalt center in POM‐ 1 is the active site. The hydrolytic stability of the title polyoxometalate (POM) was confirmed by extensive experiments, including UV/Vis spectroscopy, linear sweep voltammetry (LSV), and cathodic adsorption stripping analysis (CASA). As the [Ru(bpy)3]2+/visible light/sodium persulfate system was introduced, a POM–photosensitizer complex formed within minutes before visible‐light irradiation. It was demonstrated that this complex functioned as the active species, which remained intact after the oxygen‐evolution reaction. Multiple experimental parameters were investigated and the catalytic activity was also compared with the well‐studied POM‐based water‐oxidation catalysts (i.e., [Co4(H2O)2(α‐PW9O34)2]10? (Co4‐POM) and [CoIIICoII(H2O)W11O39]7? (Co2‐POM)) under optimum conditions.  相似文献   

15.
Two LnIII ions are sandwiched by dinuclear CoII building blocks derived from a tris‐triazamacrocyclic ligand bearing pendant carboxylic acid functionality, 1,3,5‐tris((4,7‐bis(2‐carboxyethyl)‐1,4,7‐triazacyclonon‐1‐yl)methyl)‐benzene (H6L), giving rising to two nanoscale heterometallic metal–organic cages formulated as [Co4Ln2(LH2.5)2(H2O)4]·(ClO4)6·NO3·nH2O [Ln = Dy, n = 12 ( 1 ); Ln = Yb, n = 9 ( 2 )], whose internal cavity accommodates a guest NO3? anion. Their hexanuclear cage‐like architectures are maintained both in solution and solid states as confirmed by mass spectrum as well as X‐ray diffraction experiments. These two cages display ligand‐based fluorescence emissions and therefore both were chosen to be operated as fluorescent chemosensors for the detection of nitroaromatic compounds. Attractively, these metal–organic cages allow highly selective and sensitive detection of picric acid (PA) over other nitroaromatics in solution and suspension, and the fluorescence resonance energy transfer (FRET) between the cage probes and PA is mainly responsible for the remarkable detection efficiency.  相似文献   

16.
The title compound, [Fe(C9H10BN6)2]3[Fe(NCS)6] or [FeIII(Tp)2]3[FeIII(NCS)6] [Tp is hydro­tris(1‐pyrazolyl)­borate], crystallizes in space group ; the asymmetric unit comprises one‐half of an [Fe(Tp)2]+ cation, with its Fe atom on a crystallographic inversion centre, and one‐sixth of an [Fe(NCS)6]3− anion, on a site of symmetry. The anions and cations are stacked into a three‐dimensional supramolecular aggregate via two distinct types of weak C—H⋯π interactions.  相似文献   

17.
Ligand L was synthesized and then coordinated to [Ln(hfac)3] ? 2 H2O (LnIII=Tb, Dy, Er; hfac?=1,1,1,5,5,5‐hexafluoroacetylacetonate anion) and [Ln(tta)3]?2 H2O (LnIII=Eu, Gd, Tb, Dy, Er, Yb; tta?=2‐thenoyltrifluoroacetonate) to give two families of dinuclear complexes [Ln2(hfac)6( L )] ? C6H14 and [Ln2(tta)6( L )] ? 2 CH2Cl2. Irradiation of the ligand at 37 040 cm?1 and 29 410 cm?1 leads to tetrathiafulvalene‐centered and 2,6‐di(pyrazol‐1‐yl)‐4‐pyridine‐centered fluorescence, respectively. The ligand acts as an organic chromophore for the sensitization of the infrared ErIII (6535 cm?1) and YbIII (10 200 cm?1) luminescence. The energies of the singlet and triplet states of L are high enough to guarantee an efficient sensitization of the visible EuIII luminescence (17 300–14 100 cm?1). The EuIII luminescence decay can be nicely fitted by a monoexponential function that allows a lifetime estimation of (0.49±0.01) ms. Finally, the magnetic and luminescence properties of [Yb2(hfac)6( L )] ? C6H14 were correlated, which allowed the determination of the crystal field splitting of the 2F7/2 multiplet state with MJ=±1/2 as ground states.  相似文献   

18.
The use of the [FeIII(AA)(CN)4]? complex anion as metalloligand towards the preformed [CuII(valpn)LnIII]3+ or [NiII(valpn)LnIII]3+ heterometallic complex cations (AA=2,2′‐bipyridine (bipy) and 1,10‐phenathroline (phen); H2valpn=1,3‐propanediyl‐bis(2‐iminomethylene‐6‐methoxyphenol)) allowed the preparation of two families of heterotrimetallic complexes: three isostructural 1D coordination polymers of general formula {[CuII(valpn)LnIII(H2O)3(μ‐NC)2FeIII(phen)(CN)2 {(μ‐NC)FeIII(phen)(CN)3}]NO3 ? 7 H2O}n (Ln=Gd ( 1 ), Tb ( 2 ), and Dy ( 3 )) and the trinuclear complex [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3] ? NO3 ? H2O ? CH3CN ( 4 ) were obtained with the [CuII(valpn)LnIII]3+ assembling unit, whereas three isostructural heterotrimetallic 2D networks, {[NiII(valpn)LnIII(ONO2)2(H2O)(μ‐NC)3FeIII(bipy)(CN)] ? 2 H2O ? 2 CH3CN}n (Ln=Gd ( 5 ), Tb ( 6 ), and Dy ( 7 )) resulted with the related [NiII(valpn)LnIII]3+ precursor. The crystal structure of compound 4 consists of discrete heterotrimetallic complex cations, [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3]+, nitrate counterions, and non‐coordinate water and acetonitrile molecules. The heteroleptic {FeIII(bipy)(CN)4} moiety in 5 – 7 acts as a tris‐monodentate ligand towards three {NiII(valpn)LnIII} binuclear nodes leading to heterotrimetallic 2D networks. The ferromagnetic interaction through the diphenoxo bridge in the CuII?LnIII ( 1 – 3 ) and NiII?LnIII ( 5 – 7 ) units, as well as through the single cyanide bridge between the FeIII and either NiII ( 5 – 7 ) or CuII ( 4 ) account for the overall ferromagnetic behavior observed in 1 – 7 . DFT‐type calculations were performed to substantiate the magnetic interactions in 1 , 4 , and 5 . Interestingly, compound 6 exhibits slow relaxation of the magnetization with maxima of the out‐of‐phase ac signals below 4.0 K in the lack of a dc field, the values of the pre‐exponential factor (τo) and energy barrier (Ea) through the Arrhenius equation being 2.0×10?12 s and 29.1 cm?1, respectively. In the case of 7 , the ferromagnetic interactions through the double phenoxo (NiII–DyIII) and single cyanide (FeIII–NiII) pathways are masked by the depopulation of the Stark levels of the DyIII ion, this feature most likely accounting for the continuous decrease of χM T upon cooling observed for this last compound.  相似文献   

19.
Two examples of heterometallic–organic frameworks (HMOFs) composed of dicarboxyl‐functionalized FeIII‐salen complexes and d10 metals (Zn, Cd), [Zn2(Fe‐L)22‐O)(H2O)2] ? 4 DMF ? 4 H2O ( 1 ) and [Cd2(Fe‐L)22‐O)(H2O)2] ? 2 DMF ? H2O ( 2 ) (H4L=1,2‐cyclohexanediamino‐N,N′‐bis(3‐methyl‐5‐carboxysalicylidene), have been synthesized and structurally characterized. In 1 and 2 , each square‐pyramidal FeIII atom is embedded in the [N2O2] pocket of an L4? anion, and these units are further bridged by a μ2‐O anion to give an (Fe‐L)22‐O) dimer. The two carboxylate groups of each L4? anion bridge ZnII or CdII atoms to afford a 3D porous HMOF. The gas sorption and magnetic properties of 1 and 2 have been studied. Remarkably, 1 and 2 show activity for the photocatalytic degradation of 2‐chlorophenol (2‐CP) under visible‐light irradiation, which, to the best of our knowledge, is the first time that this has been observed for FeIII‐salen‐based HMOFs.  相似文献   

20.
Two heterometallic 3d–4f coordination polymers, [Gd(CuL)2(Hbtca)(btca)(H2O)] · 2H2O ( 1 ) and [Er(CuL)2(Hbtca)(btca)(H2O)] · H2O · CH3OH ( 2 ) (CuL, H2L = 2,3‐dioxo‐5,6,14,15‐dibenzo‐1,4,8,12‐tetraazacyclo‐pentadeca‐7,13‐dien; H2btca = benzotriazole‐5‐carboxylic acid) were synthesized by solvothermal methods and characterized by single‐crystal X‐ray diffraction. Complexes 1 and 2 exhibit a double‐strand meso‐helical chain structures formed by [LnIIICuII2] (LnIII = Gd, Er) units by oxamide and benzotriazole‐5‐carboxylate bridges. They are isomorphic except that one free water molecule of 1 is replaced by a methanol molecule. All 1D chains are further interlinked by hydrogen bonds resulting in a 3D supramolecular architecture. The magnetic properties of the compound 1 and 2 are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号