首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphene oxide (GO), an up‐and‐coming material rich in oxygenated groups, shows much promise in pollution management. GO is synthesised using several synthetic routes, and the adsorption behaviour of GO is investigated to establish its ability to remove the heavy‐metal pollutants of lead and cadmium ions. The GO is synthesised by Hummers’ (HU), Hofmann’s (HO) and Staudenmaier’s (ST) methodologies. Characterisation of GO is performed before and after adsorption experiments to investigate the structure–function relationship by using Fourier‐transform infrared spectroscopy and X‐ray photoelectron spectroscopy. Scanning electron microscopy coupled with elemental detection spectroscopy is used to investigate morphological changes and heavy‐metal content in the adsorbed GO. The filtrate, collected after adsorption, is analysed by inductively coupled plasma mass spectrometry, through which the efficiency and adsorption capacity of each GO for heavy‐metal‐ion removal is obtained. Spectroscopic analysis and characterisation reveal that the three types of GO have different compositions of oxygenated carbon functionalities. The trend in the affinity towards both PbII and CdII is HU GO>HO GO>ST GO. A direct correlation between the number of carboxyl groups present and the amount of heavy‐metal ions adsorbed is established. The highest efficiency and highest adsorption capacity of heavy‐metal ions is achieved with HU, in which the relative abundance of carboxyl groups is highest. The embedded systematic study reveals that carboxyl groups are the principal functionality responsible for heavy‐metal‐ion removal in GO. The choice of synthesis methodology for GO has a profound influence on heavy‐metal‐ion adsorption. A further enrichment of the carboxyl groups in GO will serve to enhance the role of GO as an adsorbent for environmental clean‐up.  相似文献   

2.
With increasing industrial development, heavy metal pollution, e.g., cadmium (Cd) pollution, is increasingly serious in soil and water environments. This study investigated the sorption performance of nano-montmorillonite (NMMT) for Cd ions. Adsorption experiments were carried out to examine the effects of the initial metal ion concentration (22.4–224 mg/L), pH (2.5–7.5), contact time (2–180 min) and temperature (15–40 °C). A simulated acid rain solution was prepared to study the desorption of Cd adsorbed on NMMT. After the adsorption or desorption process, the supernatant was analyzed using a flame atomic absorption spectrometry method. The Cd removal rate increased as the pH and contact time increased but decreased as the initial metal ion concentration increased. The maximum adsorption capacity was estimated to be 17.61 mg/g at a Cd2+ concentration of 22.4 mg/L. The sorption process can be described by both the Langmuir and Freundlich models, and the kinetic studies revealed that the pseudo-second-order model fit the experimental data. The Cd desorption rate when exposed to simulated acid rain was less than 1%. NMMT possesses a good adsorption capacity for Cd ions. Additionally, ion exchange was the main adsorption mechanism, but some precipitation or surface adsorption also occurred.  相似文献   

3.
《Electroanalysis》2006,18(7):703-711
A simple procedure was developed to prepare a glassy carbon electrode modified with carbon nanotubes (CNTs) and thionin. Abrasive immobilization of CNTs on a GC electrode was achieved by gently rubbing the electrode surface on a filter paper supporting carbon nanotubes, then immersing the GC/CNTs‐modified electrode into a thionin solution (electroless deposition) for a short period of time (5–50 s for MWCNTs and 5–120 s for SWCNTs ). Cyclic voltammograms of the resulting modified electrode show stable and a well defined redox couple with surface confined characteristic at wide pH range 2–12. The electrochemical reversibility and stability of modified electrode prepared with incorporation of thionin into CNTs film was compared with usual methods for attachment of thionin to electrode surfaces such as electropolymerization and adsorption on the surface of preanodized electrodes. The formal potential of redox couple (E°′) shifts linearly toward the negative direction with increasing solution pH. The surface coverage of thionin immobilized on CNTs glassy carbon electrode was approximately 1.95×10?10 mol cm?2 and 3.2×10?10 mol cm?2 for MWCNTs and SWCNTs, respectively. The transfer coefficient (α) was calculated to be 0.3 and 0.35 and heterogeneous electron transfer rate constants (Ks) were 65 s?1 and 55 s?1 for MWCNTs/thionin and SWCNTs/thionin‐modified GC electrodes, respectively. The results clearly show a great facilitation of the electron transfer between thionin and CNTs adsorbed on the electrode surface. Excellent electrochemical reversibility of redox couple, high stability, technically simple and possibility of preparation at short period of time are of great advantages of this procedure for modification of electrodes.  相似文献   

4.
A novel kind of macrocyclic‐host‐functionalized periodic mesoporous organosilica (PMO) with excellent and reversible recognition of PbII was developed. The macrocyclic host molecule cis‐dicyclohexano[18]crown‐6, with strong affinity to PbII, was carefully modified as a bridged precursor to build the PMO material. To break down the limit of the functionalization degree for PMOs incorporated with large‐sized moieties, a site‐selective post‐functionalization method was proposed to further decorate the external surface of the PMO material. The selective recognition ability of the upgraded PMO material towards PbII was remarkably enhanced without destroying the mesoporous ordering. Solid‐state 13C and 29Si NMR spectroscopy, X‐ray photoelectron spectroscopy (XPS), XRD, TEM, and nitrogen adsorption–desorption isotherm measurements were utilized for a full characterization of the structure, micromorphology, and surface properties. Reversible binding of PbII was realized in the binding–elution cycle experiments. The mechanism of the supramolecular interaction between the macrocyclic host and metal ion was discussed. The synthetic strategy can be considered a general way to optimize the properties of PMOs as binding materials for practical use while preserving the mesostructure.  相似文献   

5.
The change in specific adsorption of I? ions on the series of metals Au, Hg, Bi, Pb, Cd, and Ga is analyzed using data of specifically adsorbed charge and shift in potential of zero charge. Factors determining the change in adsorbability are discussed in the light of previous formulations. It is shown that the work connected with water desorption as an ion becomes adsorbed, usually neglected or underestimated in previous discussions, is very likely to be the main factor determining the change in adsorbability along the series of metals. A rough estimation of energies involved in water desorption suggests that metal—water surface bonds are probably weak on sp-metals so that they are unable to affect the reactivity of metal surfaces with respect to the gas phase as strong covalent surface bonds are involved, for instance in the hydrogen evolution reaction. Conversely, the strong effect of water desorption on the specific adsorption of ions may be an indication of ion—metal interactions to be substantially independent of the nature of the metal. This suggests that covalent contributions to the surface bond are apparently minor for metals more electropositive than Au.  相似文献   

6.
In this paper, an adsorption removal mechanism of heavy metal ions (Pb, Cu, Cd, Zn, and Ni) by lignin is investigated by molecular and quantum chemical modeling. First, the lowest energy sites of lignin for heavy metal ions were investigated using a Metropolis Monte Carlo search and simulated annealing. Then, equilibrium adsorption capacities of lignin for heavy metal ions were calculated with conductor-like screening models with a segmented activity coefficients, together with generalized gradient approximation and Volsko–Wilk–Nusair density functional functional theory. These calculations followed the local pseudo-thermodynamic equilibrium at the interface of lignin and ion-containing effluent. Several kinetic Monte Carlo simulations were performed to analyze the surface kinetics of ion adsorption. The affinity of lignin for metal ions follows the order: Pb > Cu > Cd > Zn > Ni which is in agreement with experimental observations. The stability of ions follows the order: Pb > Cd > Zn > Ni > Cu, indicating that the adsorption affinity does not demand the same order of stability on ions. In addition, it was found that while the adsorption of heavy metal ions on the lignin is accessible, the adsorbed heavy metal ions, however, are less stable than the adsorbed water molecules. As such, the used lignin must be replaced by fresh lignin in a cyclic manner. While lignin provides desirable adsorption performance for single ion removal, it failed in processing of practical heavy metal ion solutions expected in environmental issues.  相似文献   

7.
The thermodynamics of and the kinetic parameters controlling the sequestration of the toxic heavy‐metal ion CdII from aqueous media by using a novel material consisting of glassy carbon microspheres (10–20 μm in diameter) chemically modified with L ‐cysteine methyl ester are presented. In an effort to reduce the cost and increase the efficiency of toxic‐metal‐ion removal, this modification strategy was expanded to attach L ‐cysteine methyl chemically ester to less‐expensive graphite powders (2–20 μm in diameter), and the thermodynamic and kinetic parameters of the sequestration of CdII, CuII, and AsIII toxic metal ions are presented. It was found that the use of chemically modified graphite powder greatly increased both the rate and the amount of metal ions removed from aqueous media. This work has important potential applications to filtration of drinking water and environmental remediation.  相似文献   

8.
3‐Hydroxy‐N,N‐diethylaniline (HDEA) as a tertiary aromatic amine was introduced onto the surface of chloromethylated polysulfone (CMPSF) microfiltration membrane through modification reaction, resulting in the modified membrane PSF‐DEA. A redox surface‐initiating system (DEA/APS) was constituted by the bonded tertiary aromatic amine group DEA and ammonium persulfate (APS) in aqueous solution, and so, the free radicals formed on the membrane initiated sodium p‐styrenesulfonate (SSS) as an anionic monomer to produce graft polymerization, getting the grafting‐type composite microfiltration membrane, PSF‐g‐PSSS membrane. Subsequently, the adsorption property of PSF‐g‐PSSS membrane for three heavy metal ions, Pb2+, Zn2+, and Hg2+ ions, was fully examined, and the rejection performance of PSF‐g‐PSSS membrane towards the three heavy metal ions was emphatically evaluated via permeation experiments. The experimental results show that by the initiating of the surface‐initiating system of DEA/APS, the graft polymerization can smoothly be carried out under mild conditions. PSF‐g‐PSSS membrane as a functional microfiltration membrane has strong adsorption ability for heavy metal ions by right of strong electrostatic interaction (or ion exchange action) between the anionic sulfonate ions on the membrane and heavy metal ions. The order of adsorption capacity is Pb2+ > Zn2+ > Hg2+, and the adsorption capacity of Pb2+ ion gets up to 2.18 μmol/cm2. As the volume of permeation solutions, in which the concentrations of the three metal ions are 0.2 mmol/L, are in a range of 50 to 70 mL, the rejection rate of PSF‐g‐PSSS membrane for the three heavy metal ions can reach a level of 95%, displaying a fine rejection and removing performance towards heavy metal ions.  相似文献   

9.
Carboxylated peptide‐functionalized gold nanoparticles (peptide‐GNPs) self‐assemble into two‐ and three‐dimensional nanostructures in the presence of various heavy metal ions (i.e. Pb2+, Cd2+, Cu2+, and Zn2+) in aqueous solution. The assembly process is monitored by following the changes in the surface plasmon resonance (SPR) band of gold nanoparticles in a UV/Vis spectrophotometer, which shows the development of a new SPR band in the higher‐wavelength region. The extent of assembly is dependent on the amount of metal ions present in the medium and also the time of assembly. TEM analysis clearly shows formation of two‐ and three‐dimensional nanostructures. The assembly process is completely reversible by addition of alkaline ethylenediaminetetraacetic acid (EDTA) solution. The driving force for the assembly of peptide‐GNPs is mainly metal ion/carboxylate coordination. The color and spectral changes due to this assembly can be used for detection of these heavy‐metal ions in solution.  相似文献   

10.
Controlled self‐assembly (SA) of proteins offers the possibility to tune their properties or to create new materials. Herein, we present the synthesis of a modified human insulin (HI) with two distinct metal‐ion binding sites, one native, the other abiotic, enabling hierarchical SA through coordination with two different metal ions. Selective attachment of an abiotic 2,2′‐bipyridine (bipy) ligand to HI, yielding HI–bipy, enabled ZnII‐binding hexamers to SA into trimers of hexamers, [[HI–bipy]6]3, driven by octahedral coordination to a FeII ion. The structures were studied in solution by small‐angle X‐ray scattering and on surfaces with AFM. The abiotic metal ligand had a higher affinity for FeII than ZnII ions, enabling control of the hexamer formation with ZnII and the formation of trimers of hexamers with FeII ions. This precise control of protein SA to give oligomers of oligomers provides nanoscale structures with potential applications in nanomedicine.  相似文献   

11.
Water contaminated with heavy metals has been identified as a significant threat to human health. Therefore, the development of safe and rapid water‐treatment techniques is necessary. We have synthesized an eco‐friendly γ‐cyclodextrin metal–organic framework (MOF)‐based nanoporous carbon (γ‐CD MOF‐NPC) material, conducted a comprehensive characterization of it, and found its rapid and effective CdII‐removal capacity. The γ‐CD MOF‐NPC could effectively sequester a majority of cadmium ions within one minute, and it still demonstrated excellent adsorption ability under various conditions, including different pH, adsorbent dosage, and coexistent ions. The maximum adsorption capacity was calculated to be 140.85 mg g?1 by means of the Langmuir model. The adsorption was primarily due to the effect of ion exchange of oxygen‐containing functional groups, as determined by studying the ζ potential and Fourier transform infrared spectroscopy. Flow‐through experiments further proved the rapid CdII‐removal capacity and potential of the practical application of γ‐CD MOF‐NPC in water treatment according to the cytotoxic data.  相似文献   

12.
Mesoporous iron phosphate (FePO4) was synthesized through assembly of polymeric micelles made of asymmetric triblock co‐polymer (polystyrene‐b‐poly‐2‐vinylpyridine‐b‐ethylene oxide; PS‐PVP‐PEO). The phosphoric acid solution stimulates the formation of micelles with core–shell‐corona architecture. The negatively charged PO43? ions dissolved in the solution strongly interact with the positively charged PVP+ units through an electrostatic attraction. Also, the presence of PO43? ions realizes a bridge between the micelle surface and the metal ions. The removal of polymeric template forms the robust framework of iron phosphate with 30 nm pore diameter and 15 nm wall thickness. Our method is applicable to other mesoporous metal phosphates by changing metal sources. The obtained materials were fully characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), N2 adsorption–desorption, Raman spectroscope, and other techniques.  相似文献   

13.
Competitive adsorption is the usual situation in real applications, and it is of critical importance in determining the overall performance of an adsorbent. In this study, the competitive adsorption characteristics of all the combinations of binary mixtures of aqueous metal ion species Ca2+(aq), Cd2+(aq), Pb2+(aq), and Hg2+(aq) on a functionalized activated carbon were investigated. The porous structure of the functionalized active carbon was characterized using N2 (77 K) and CO2 (273 K) adsorption. The surface group characteristics were examined by temperature-programmed desorption, Fourier transform infrared spectroscopy, Raman spectroscopy, acid/base titrations, and measurement of the point of zero charge (pHpzc). The adsorption of aqueous metal ion species, M2+(aq), on acidic oxygen functional group sites mainly involves an ion exchange mechanism. The ratios of protons displaced to the amount of M2+(aq) metal species adsorbed have a linear relationship for both single-ion and binary mixtures of these species. Hydrolysis of metal species in solution may affect the adsorption, and this is the case for adsorption of Hg2+(aq) and Pb2+(aq). Competitive adsorption decreases the amounts of individual metal ions adsorbed, but the maximum amounts adsorbed still follow the order Hg2+(aq) > Pb2+(aq) > Cd2+(aq) > Ca2+(aq) obtained for single metal ion adsorption. The adsorption isotherms for single metal ion species were used to develop a model for competitive adsorption in binary mixtures, involving exchange of ions in solution with surface proton sites and adsorbed metal ions, with the species having different accessibilities to the porous structure. The model was validated against the experimental data.  相似文献   

14.
Non‐coordinative interactions between a metal ion and the aromatic ring of a fluorophore can act as a versatile sensing mechanism for the detection of metal ions with a large emission change of fluorophores. We report the design of fluorescent probes based on arene–metal‐ion interactions and their biological applications. This study found that various probes having different fluorophores and metal binding units displayed significant emission redshift upon complexation with metal ions, such as AgI, CdII, HgII, and PbII. X‐ray crystallography of the complexes confirmed that the metal ions were held in close proximity to the fluorophore to form an arene–metal‐ion interaction. Electronic structure calculations based on TDDFT offered a theoretical basis for the sensing mechanism, thus showing that metal ions electrostatically modulate the energy levels of the molecular orbitals of the fluorophore. A fluorescent probe was successfully applied to the ratiometric detection of the uptake of CdII ions and hydrogen sulfide (H2S) in living cells. These results highlight the utility of interactions between arene groups and metal ions in biological analyses.  相似文献   

15.
Multi-walled carbon nanotubes (MWCNTs) were used successfully for the removal of heavy metals from aqueous solution. Characterization techniques showed the carbon as nanotubes with an average diameter between 40 and 60 nm and a specific surface area of 61.5 m2 g?1. The effect of carbon nanotubes mass, contact time, metal ions concentration, solution pH, and ionic strength on the adsorption of Cu(II), Pb(II), Cd(II) and Zn(II) by MWCNTs were studied and optimized. The adsorption of the heavy metals from aqueous solution by MWCNTs was studied kinetically using different kinetic models. A pseudo-second order model and the Elovich model were found to be in good agreement with the experimental data. The mechanism of adsorption was studied by the intra-particle diffusion model, and the results showed that intra-particle diffusion was not the slowest of the rate processes that determined the overall order. This model also revealed that the interaction of the metal ions with the MWCNTs surface might have been the most significant rate process. There was a competition among the metal ions for binding of the active sites present on the MWCNTs surface with affinity in the following order: Cu(II) > Zn(II) > Pb(II) > Cd(II).  相似文献   

16.
The adsorption behavior of pyridine on a smooth polycrystalline gold electrode surface was investigated over a wide wavenumber region (2000–500 cm−1) by in situ infrared reflection absorption spectroscopy (IRAS). The reversible adsorption/desorption of pyridine was observed upon the change in applied electrode potential, and the adsorption state at positive potentials was found to depend strongly on the kind of halide ion used as a supporting electrolyte. Symmetry analysis of absorption bands observed revealed that pyridine molecules adsorb with the molecular axis (C2 axis) perpendicular to the electrode surface (vertical configuration) at positive potentials in 0.5 M KF, KCl and KBr solutions. A band due to the out-of-plane bending mode of the adsorbed pyridine molecule was observed at potentials more negative than ca. 0 V for 0.5 M KF solution containing 100 mM pyridine. We concluded that even in the 100 mM pyridine solution, adsorbed pyridine forms a monolayer and that the molecules reorient from a flat (parallel) to the vertical configuration as the potential becomes less negative. No bands due to adsorbed pyridine were detected for 0.5 M KI solution. The amount of adsorbed pyridine was found to depend strongly on the strength of specific adsorption of halide ions.  相似文献   

17.
The increased global concern on environmental protection has made researchers focus their attention on new and more efficient methods of pollutant removal. In this research, novel nanocomposite adsorbents,i.e., magnetic hydroxyapatite (Fe3O4@HA) and magnetic hydroxyapatite β‐cyclodextrin (Fe3O4@HA‐CD) were synthesized and used for heavy metal removal. The adsorbents were characterized by FTIR, XRD, TGA, VSM, and SEM. In order to investigate the effect of β‐cyclodextrin (β‐CD) removal efficiency, adsorption results of nine metal ions were compared for both adsorbents. β‐CD showed the most increasing effect for Cd2+ and Cu2+ removal, so these two ions were selected for further studies. The effect of diverse parameters including pH, contact time, initial metal ion concentration and adsorbent dosage on the adsorption process was discussed. The optimum pH was 6 and adsorption equilibrium was achieved after 1 hr. Adsorption kinetic data were well fitted by pseudo‐second‐order model proposing that metal ions were adsorbed via chemical reaction. Adsorption isotherm was best described by the Langmuir model, and maximum adsorption capacity for Cd2+ and Cu2+ was 100.00 and 66.66 (mg/g), respectively. Desorption experiment was also done, and the most efficient eluent used for desorption of metal ions was EDTA (0.001 M) with 91% and 88% of Cd2+ and Cu2+ release, respectively. Recyclability studies also showed a 19% decrease in the adsorption capacity of the adsorbent after five cycles of regeneration. Therefore, the synthesized adsorbents were recognized as potential candidates for heavy metal adsorption applications.  相似文献   

18.
Poly-L-histidine immobilized poly(glycidyl methacrylate) (PGMA) cryogel discs were used for the removal of heavy metal ions [Pb(II), Cd(II), Zn(II) and Cu(II)] from aqueous solutions. In the first step, PGMA cryogel discs were synthesized using glycidyl methacrylate (GMA) as a basic monomer and methylene bisacrylamide (MBAAm) as a cross linker in order to introduce active epoxy groups through the polymeric backbone. Then, the metal chelating groups are incorporated to cryogel discs by immobilizing poly-L-histidine (mol wt ≥ 5000) having poly-imidazole ring. The swelling test, fourier transform infrared spectroscopy and scanning electron microscopy were performed to characterize both the PGMA and poly-L-histidine immobilized PGMA [P-His@PGMA] cryogel discs. The effects of the metal ion concentration and pH on the adsorption capacity were studied. These parameters were varied between 3.0–6.0 and 10–800 mg/L for pH and metal ion concentration, respectively. The maximum adsorption capacity of heavy metal ions of P-His@PGMA cryogel discs were 6.9 mg/g for Pb(II), 6.4 mg/g for Cd(II), 5.6 mg/g for Cu(II) and 4.3 mg/g for > Zn(II). Desorption of heavy metal ions was studied with 0.1 M HNO3 solution. It was observed that cryogel discs could be recurrently used without important loss in the adsorption amount after five repetitive adsorption/desorption processes. Adsorption isotherms were fitted to Langmuir model and adsorption kinetics were suited to pseudo-second order model. Thermodynamic parameters (i.e. ΔH° ΔS°, ΔG°) were also calculated at different temperatures.  相似文献   

19.
The adsorption of Eu(III) on multiwalled carbon nanotubes (MWCNTs) as a function of pH, ionic strength and solid contents are studied by batch technique. The results indicate that the adsorption of Eu(III) on MWCNTs is strongly dependent on pH values, dependent on ionic strength at low pH values and independent of ionic strength at high pH values. Strong surface complexation and ion exchange contribute to the adsorption of Eu(III) on MWCNTs at low pH values, whereas surface complexation and surface precipitation are the main adsorption mechanism of Eu(III) on MWCNTs. The desorption of adsorbed Eu(III) from MWCNTs by adding HCl is also studied and the recycling use of MWCNTs in the removal of Eu(III) is investigated after the desorption of Eu(III) at low pH values. The results indicate that adsorbed Eu(III) can be easily desorbed from MWCNTs at low pH values, and MWCNTs can be repeatedly used to remove Eu(III) from aqueous solutions. MWCNTs are suitable material in the preconcentration and solidification of radionuclides from large volumes of aqueous solutions in nuclear waste management.  相似文献   

20.
The phosphorylated polyacrylonitrile‐based (P‐PAN) nanofibers were prepared by electrospinning technique and used for removal of Cu2+, Ni2+, Cd2+, and Ag+ from aqueous solution. The morphological and structural properties of P‐PAN nanofibers were characterized by scanning electron microscope and Fourie transform infrared spectra. The P‐PAN nanofibers were evaluated for the adsorption capacity at various pH, contact time, and reaction temperature in a batch system. The reusability of P‐PAN nanofibers for the removal of heavy metal ions was also determined. Adsorption isotherms and adsorption kinetics were also used to examine the fundamental adsorption properties. It is found that the P‐PAN nanofibers show high efficiency, and the maximal adsorption capacities of metal ions as calculated from the Langmuir model were 92.1, 68.3, 14.8, and 51.7 mg/g, respectively. The kinetics of the heavy metal ions adsorption were found to follow pseudo‐second‐order rate equation, suggesting chemical adsorption can be regarded as the major factor in the adsorption process. Sorption/desorption results reveal that the obtained P‐PAN nanofibers can remain high removal efficiency after four cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号