首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The chlorination of HPLC fractions with pristine giant fullerenes, C102 and C104, followed by X‐ray crystallographic study of chlorides, C102(603)Cl18/20 and C104(234)Cl16–22, confirmed the presence of the most stable IPR (IPR=Isolated Pentagon Rule) isomers, C102(603) and C104(234), in the fullerene soot. The discussion concerns the chlorination patterns of polychlorides and relative stability of pristine isomers of C102 and C104 fullerenes.  相似文献   

2.
High‐temperature chlorination of pristine C98 fullerene isomers separated by HPLC from the fullerene soot afforded crystals of C98Cl22 and C98Cl20. An X‐ray structure elucidation revealed, respectively, the presence of carbon cages of the most stable C2‐C98(248) and rather unstable C1‐C98(116), which represent the first isolated pentagon rule (IPR) isomers of fullerene C98 confirmed experimentally. The chlorination patterns of the chlorides are discussed in terms of the formation of isolated C=C bonds and aromatic substructures on the fullerene cages.  相似文献   

3.
High‐temperature chlorination of three IPR isomers of fullerene C88, C2‐C88(7), Cs‐C88(17), and C2‐C88(33), resulted in the isolation and X‐ray structural characterization of C88(7)Cl12, C88(7)Cl24, C88(17)Cl22, and C88(33)Cl12/14. Chlorination patterns of C88(7) and C88(33) isomers are unusual in that one or more pentagons remain free from chlorination while some other pentagons are occupied by two or three Cl atoms. The addition patterns of the isolated chlorides are discussed in terms of the distribution of twelve pentagons on the carbon cages and the formation of stabilizing isolated C=C bonds and benzenoid rings.  相似文献   

4.
Chlorination of various HPLC fractions of C96 with a mixture of VCl4 and SbCl5 at 340–360 °C and single‐crystal X‐ray diffraction study of the products led to the identification of three new IPR isomers of C96. The C96(175) isomer forms a stable chloride, C96(175)Cl20, while chlorides of two other new isomers, C96(114) and C96(80), undergo cage shrinkage yielding C94(NC1)Cl28 and C96(NC2)Cl32 with non‐classical (NC) cages. These two NC chlorides contain, respectively, one and two heptagons flanked by pairs of fused pentagons and are stabilized by chlorine attachment to the emerging pentagon–pentagon junctions. Thus, the number of the experimentally confirmed C96 isomers has reached nine, which corroborates the empirical rule that the C6n fullerenes exhibit particularly rich isomerism.  相似文献   

5.
Chlorination of a mixture of C86 isomers no. 16 (Cs) and no. 17 (C2) with VCl4 or a (TiCl4+Br2) mixture afforded crystalline chlorides with 16 to 22 Cl atoms per fullerene cage. Single crystal X‐ray diffraction with the use of synchrotron radiation enabled us to determine the chlorination patterns of C86(16)Cl16, C86(17)Cl18, C86(17)Cl20, and C86(17)Cl22. At these degrees of chlorination, addition patterns of C86(16) and C86(17) chlorides have some features in common, owing to the close similarity in the cage structures of both isomers. The average energy of C?Cl bonds decreases with increasing number of attached Cl atoms.  相似文献   

6.
High‐temperature chlorination of C90‐containing fullerene fraction resulted in the isolation and X‐ray structural characterization of C90(1)Cl10/12, the first derivatives of a relatively unstable isomer D5h‐C90(1) with a nanotubular shape. In the crystal structure, three isomers of both C90(1)Cl10 and C90(1)Cl12 with similar chlorination patterns co‐crystallize in the same crystallographic site. Thus, in contrast to the previous reports, D5h‐C90(1) is present, though with a low abundance, in the fullerene soot produced by arc‐discharge method with undoped graphite rods.  相似文献   

7.
High‐temperature chlorination of C100 fullerene followed by X‐ray structure determination of the chloro derivatives enabled the identification of three isomers of C100 from the fullerene soot, specifically numbers 18, 425, and 417, which obey the isolated pentagon rule (IPR). Among them, isomers C1‐C100(425) and C2‐C100(18) afforded C1‐C100(425)Cl22 and C2‐C100(18)Cl28/30 compounds, respectively, which retain their IPR cage connectivities. In contrast, isomer C2v‐C100(417) gives Cs‐C100(417)Cl28 which undergoes a skeletal transformation by the loss of a C2 fragment, resulting in the formation of a nonclassical (NC) C1‐C98(NC)Cl26 with a heptagon in the carbon cage. Most probably, two nonclassical C1‐C100(NC)Cl18/22 chloro derivatives originate from the IPR isomer C1‐C100(382), although both C1‐C100(344) and even nonclassical C1‐C100(NC) can be also considered as the starting isomers.  相似文献   

8.
Chlorination of C100 fullerene with a mixture of VCl4 and SbCl5 afforded C96Cl20 with a strongly unconventional structure. In contrast to the classical fullerenes containing only hexagonal and pentagonal rings, the C96 cage contains three heptagonal rings and, therefore, should be classified as a fullerene with a nonclassical cage (NCC). There are several types of pentagon fusions in the C96 cage including pentagon pairs and pentagon triples. The three‐step pathway from isolated‐pentagon‐rule (IPR) C100 to C96(NCC‐3hp) includes two C2 losses, which create two cage heptagons, and one Stone–Wales rotation under formation of the third heptagon. Structural reconstruction established C100 isomer no. 18 from 450 topologically possible IPR isomers as the starting C100 fullerene. Until now, no pristine C100 isomers have been confirmed based on the experimental results.  相似文献   

9.
《化学:亚洲杂志》2017,12(18):2379-2382
Cage transformations in fullerenes are rare phenomena which are still not fully understood. We report the first skeletal transformation of an Isolated‐Pentagon‐Rule (IPR) isomer of C78 fullerene upon high‐temperature chlorination which proceeds by six‐step Stone–Wales rearrangements affording non‐IPR, non‐classical (NC ) C78(NC 2)Cl24 with two cage heptagons, six pairs of fused pentagons, and an unprecedented loop‐like chlorination pattern. The following loss of a C2 unit results in C76(NC 3)Cl24 containing three cage heptagons.  相似文献   

10.
High‐temperature chlorination of fullerene C88 (isomer 33) with VCl4 gives rise to skeletal transformations affording several nonclassical (NC) fullerene chlorides, C86(NC1)Cl24/26 and C84(NC2)Cl26, with one and two heptagons, respectively, in the carbon cages. The branched skeletal transformation including C2 losses as well as a Stone–Wales rearrangement has been comprehensively characterized by the structure determination of two intermediates and three final chlorination products. Quantum‐chemical calculations demonstrate that the average energy of the C?Cl bond is significantly increased in chlorides of nonclassical fullerenes with a large number of chlorinated sites of pentagon–pentagon adjacency.  相似文献   

11.
Although all the pure‐carbon fullerene isomers above C60 reported to date comply with the isolated pentagon rule (IPR), non‐IPR structures, which are expected to have different properties from those of IPR species, are obtainable either by exohedral modification or by endohedral atom doping. This report describes the isolation and characterization of a new endohedral metallofullerene (EMF), La2@C76, which has a non‐IPR fullerene cage. The X‐ray crystallographic result for the La2@C76/[NiII(OEP)] (OEP=octaethylporphyrin) cocrystal unambiguously elucidated the Cs(17 490)‐C76 cage structure, which contains two adjacent pentagon pairs. Surprisingly, multiple metal sites were distinguished from the X‐ray data, which implies dynamic behavior for the two La3+ cations inside the cage. This dynamic behavior was also corroborated by variable‐temperature 139 La NMR spectroscopy. This phenomenon conflicts with the widely accepted idea that the metal cations in non‐IPR EMFs invariably coordinate strongly with the negatively charged fused‐pentagon carbons, thereby providing new insights into modern coordination chemistry. Furthermore, our electrochemical and computational studies reveal that La2@Cs(17 490)‐C76 has a larger HOMO–LUMO gap than other dilanthanum‐EMFs with IPR cage structures, such as La2@D3h(5)‐C78 and La2@Ih(7)‐C80, which implies that IPR is no longer a strict rule for EMFs.  相似文献   

12.
High‐temperature trifluoromethylation of a C90 isomeric mixture with CF3I followed by HPLC separation of C90(CF3)n isomers resulted in the isolation of several individual C90(CF3)14?18 compounds. Single crystal X‐ray diffraction with the use of synchrotron radiation resulted in the structure determination of C90(30)(CF3)14, C90(35)(CF3)16/18, and C90(45)(CF3)16/18. Their addition patterns are discussed and compared with the known isomers C90(30)(CF3)18 and C90(35)(CF3)14, respectively. The presence of the most stable C90 isomer, C90(45), in the fullerene soot has been confirmed for the first time.  相似文献   

13.
High‐temperature trifluoromethylation of isolated‐pentagon‐rule (IPR) fullerene C92 chlorination products followed by HPLC separation of C92(CF3)n derivatives resulted in the isolation and X‐ray structural characterization of IPR C92(38)(CF3)18 and non‐classical C92(NC)(CF3)22. The formation of C92(38)(CF3)18 as the highest CF3 derivative of the known isomer C92(38) can be expected. The formation of C92(NC)(CF3)22 was interpreted as chlorination‐promoted cage transformation of C92(38) followed by trifluoromethylation of non‐classical C92(NC) chloride. Noticeably, C92(NC)(CF3)22 shows the highest degree of trifluoromethylation among all known CF3 derivatives of fullerenes. The addition patterns of C92(38)(CF3)18 and C92(NC)(CF3)22 are discussed and compared to the chlorination patterns of C92(38)Cln compounds.  相似文献   

14.
Chlorination of the C100(18) fullerene with a mixture of VCl4 and SbCl5 gives rise to branched skeletal transformations affording non‐classical (NC) C94(NC1)Cl22 with one heptagon in the carbon cage together with the previously reported C96(NC3)Cl20 with three heptagons. The three‐step pathway to C94(NC1)Cl22 starts with two successive C2 losses of 5:6 C?C bonds to give two cage heptagons, whereas the third C2 loss of the 5:5 C?C bond from a pentalene fragment eliminates one of the heptagons. Quantum‐chemical calculations demonstrate that the two unusual skeletal transformations—creation of a heptagon in C96(NC3)Cl20 through a Stone–Wales rearrangement and the presently reported elimination of a heptagon through C2 loss—are both characterized by relatively low activation energy.  相似文献   

15.
In terms of density functional theory combined with statistic mechanics computations, we investigated a dimetallic sulfide endohedral fullerene Sc2S@C76 which has been synthesized without any characterization in experiments. Our theoretical study reveals that Sc2S@Td(19151)‐C76 which satisfies the isolated‐pentagon rule (IPR) possesses the lowest energy, followed by three non‐IPR structures (Sc2S@C2v(19138)‐C76, Sc2S@Cs (17490)‐C76, and Sc2S@C1(17459)‐C76). To clarify the relative stabilities of those isomers at high temperatures, enthalpy–entropy interplay has been taken into consideration. Calculation results indicate that three species Sc2S@Td(19151)‐C76, Sc2S@C2v(19138)‐C76, and Sc2S@C1(17459)‐C76 have noticeable molar fractions at the fullerene‐formation temperature region (500–3000K), and the Sc2S@C1(17459)‐C76 with one pentagon pair becomes the most predominant isomer above 1800 K, suggesting that the unexpected non‐IPR structure is thermodynamically favorable at elevated temperatures. In addition, the structural characteristics, electron features, UV‐vis‐NIR adsorptions, and 13C NMR spectra of those three stable structures are introduced to assist experimental identification and characterization in future. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
The complete set of 6332 classical isomers of the fullerene C68 as well as several non‐classical isomers is investigated by PM3, and the data for some of the more stable isomers are refined by the DFT‐based methods HCTH and B3LYP. C2:0112 possesses the lowest energy of all the neutral isomers and it prevails in a wide range of temperatures. Among the fullerene ions modeled, C682?, C684? and C686?, the isomers C682?(Cs:0064), C684?(C2v:0008), and C686?(D3:0009) respectively, are predicted to be the most stable. This reveals that the pentagon adjacency penalty rule (PAPR) does not necessarily apply to the charged fullerene cages. The vertical electron affinities of the neutral Cs:0064, C2v:0008, and D3:0009 isomers are 3.41, 3.29, and 3.10 eV, respectively, suggesting that they are good electron acceptors. The predicted complexation energy, that is, the adiabatic binding energy between the cage and encapsulated cluster, of Sc2C2@C68(C2v:0008) is ?6.95 eV, thus greatly releasing the strain of its parent fullerene (C2v:0008). Essentially, C68 fullerene isomers are charge‐stabilized. Thus, inducing charge facilitates the isolation of the different isomers. Further investigations show that the steric effect of the encaged cluster should also be an important factor to stabilize the C68 fullerenes effectively.  相似文献   

17.
Trifluoromethylation of higher fullerene mixtures with CF3I was performed in ampoules at 400 to 420 and 550 to 560 °C. HPLC separation followed by crystal growth and X‐ray diffraction studies allowed the structure elucidation of nine CF3 derivatives of D2‐C84 (isomer 22). Molecular structures of two isomers of C84(22)(CF3)12, two isomers of C84(22)(CF3)14, four isomers of C84(22)(CF3)16, and one isomer of C84(22)(CF3)20 were discussed in terms of their addition patterns and relative formation energies. DFT calculations were also used to predict the most stable molecular structures of lower CF3 derivatives, C84(22)(CF3)2–10. It was found that the addition of CF3 groups to C84(22) is governed by two rules: additions can only occur at para positions of C6(CF3)2 hexagons and no additions can occur at triple‐hexagon‐junction positions on the fullerene cage.  相似文献   

18.
Fullerenes and their structure and stability have been a major topic of discussion and research since their discovery nearly 30 years ago. The isolated pentagon rule (IPR) has long served as a guideline for predicting the most stable fullerene cages. More recently, endohedral metallofullerenes have been discovered that violate the IPR. This article presents a systematic, temperature dependent, statistical thermodynamic study of the 24 possible IPR isomers of C84 as well as two of the experimentally known non‐IPR isomers (51365 and 51383), at several different charges (0, ?2, ?4, and ?6). From the results of this study, we conclude that the Hückel rule is a valid simpler explanation for the stability of fused pentagons in endohedral metallofullerenes. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
Chlorination is an effective approach for understanding the feature of multiple additions on fullerene cages. The chlorofullerenes obtained are versatile synthons for further derivatization. However, chlorofullerenes used for chemical reaction studies are mainly based on the skew‐pentagonal‐pyramidal (SPP) C60Cl6. In this work, a new isomer of C60Cl10 that does not contain an SPP‐C60Cl6 substructure was identified. Its electrochemical properties give it unexpected cyclic voltammetric behavior at more negative potentials relative to other chlorofullerenes. Friedel–Crafts arylation shows good reactivity of this compound. These new findings challenge opinions of fullerene addition patterns and will break the monopoly of C60Cl6 as a precursor for fullerene modifications.  相似文献   

20.
The most‐stable #916C56 carbon cage has been captured by in situ chlorination during the radio frequency furnace process. The resulting exohedral #916C56Cl12 was separated and unambiguously characterized by single crystal X‐ray structure determination. The discovery of #916C56 provides evidence for a thermodynamically controlled mechanism of fullerene formation, and on the other hand shows that the in situ chlorination does not remarkably influence the fullerene formation itself but just results in the capture of preformed cages. A detailed analysis of the chlorination pattern of #916C56Cl12 reveals the main factors controlling the reactivity of non‐IPR fullerenes. A high degree of aromatization was observed in the remaining π‐system by considering geometric criteria and nucleus‐independent chemical‐shift analysis (NICS). Along with the well‐known stabilization of pentagon pentagon junctions during chlorination, the formation of aromatic islands plays an important role in the stabilization of the fullerene cage and also in the determination of the chlorination pattern. Based on these empirical rules, the preferable addition patterns for non‐IPR fullerene cages can be easily predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号