首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The controlled exfoliation of hexagonal boron nitride (h‐BN) into single‐ or few‐layered nanosheets remains a grand challenge and becomes the bottleneck to essential studies and applications of h‐BN. Here, we present an efficient strategy for the scalable synthesis of few‐layered h‐BN nanosheets (BNNS) using a novel gas exfoliation of bulk h‐BN in liquid N2 (L‐N2). The essence of this strategy lies in the combination of a high temperature triggered expansion of bulk h‐BN and the cryogenic L ‐N2 gasification to exfoliate the h‐BN. The produced BNNS after ten cycles (BNNS‐10) consisted primarily of fewer than five atomic layers with a high mass yield of 16–20 %. N2 sorption and desorption isotherms show that the BNNS‐10 exhibited a much higher specific surface area of 278 m2 g?1 than that of bulk BN (10 m2 g?1). Through the investigation of the exfoliated intermediates combined with a theoretical calculation, we found that the huge temperature variation initiates the expansion and curling of the bulk h‐BN. Subseqently, the L ‐N2 penetrates into the interlayers of h‐BN along the curling edge, followed by an immediate drastic gasification of L ‐N2, further peeling off h‐BN. This novel gas exfoliation of high surface area BNNS not only opens up potential opportunities for wide applications, but also can be extended to produce other layered materials in high yields.  相似文献   

2.
The two‐dimensional carbon material graphdiyne (GDY) holds great promise as a semiconductor and porous material, however, exfoliation of bulk GDY into single‐ or few‐layered GDY in the aqueous phase remains a challenge. We report an efficient method for the damage‐free exfoliation of bulk GDY into single‐ or few‐layered GDY with high yield in an aqueous solution of inorganic salts (e.g., Li2SiF6). This was confirmed by spherical‐aberration‐corrected scanning transmission electron microscopy, scanning/transmission electron microscopy, atomic force microscopy, Fourier transform infrared/Raman spectroscopy, X‐ray photoelectron spectroscopy. The method gives high exfoliation efficiency (75 wt %) without creating additional structural defects or oxides in the exfoliated GDY. Theoretical calculations suggest that non‐covalent adsorption of the anion, diffusion of the cation, and subsequent repulsive forces between adjacent flakes are the main driving force for the efficient exfoliation.  相似文献   

3.
In the present study, we report the synthesis of a high‐quality, single‐crystal hexagonal β‐Co(OH)2 nanosheet, exhibiting a thickness down to ten atomic layers and an aspect ratio exceeding 900, by using graphene oxide (GO) as an exfoliant of β‐Co(OH)2 nanoflowers. Unlike conventional approaches using ionic precursors in which morphological control is realized by structure‐directing molecules, the β‐Co(OH)2 flower‐like superstructures were first grown by a nanoparticle‐mediated crystallization process, which results in large 3D superstructure consisting of ultrathin nanosheets interspaced by polydimethoxyaniline (PDMA). Thereafter, β‐Co(OH)2 nanoflowers were chemically exfoliated by surface‐active GO under hydrothermal conditions into unilamellar single‐crystal nanosheets. In this reaction, GO acts as a two‐dimensional (2D) amphiphile to facilitate the exfoliation process through tailored interactions between organic and inorganic molecules. Meanwhile, the on‐site conjugation of GO and Co(OH)2 promotes the thermodynamic stability of freestanding ultrathin nanosheets and restrains further growth through Oswald ripening. The unique 2D structure combined with functionalities of the hybrid ultrathin Co(OH)2 nanosheets on rGO resulted in a remarkably enhanced lithium‐ion storage performance as anode materials, maintaining a reversible capacity of 860 mA h g?1 for as many as 30 cycles. Since mesocrystals are ubiquitous and rich in morphological diversity, the strategy of the GO‐assisted exfoliation of mesocrystals developed here provides an opportunity for the synthesis of new functional nanostructures that could bear importance in clean renewable energy, catalysis, photoelectronics, and photonics.  相似文献   

4.
Composition‐tailored Mn1?xRuxO2 2 D nanosheets and their reassembled nanocomposites with mesoporous stacking structure are synthesized by a soft‐chemical exfoliation reaction and the subsequent reassembling of the exfoliated nanosheets with Li+ cations, respectively. The tailoring of the chemical compositions of the exfoliated Mn1?xRuxO2 2 D nanosheets and their lithiated nanocomposites can be achieved by adopting the Ru‐substituted layered manganese oxides as host materials for exfoliation reaction. Upon the exfoliation–reassembling process, the substituted ruthenium ions remain stabilized in the layered Mn1?xRuxO2 lattice with mixed Ru3+/Ru4+ oxidation state. The reassembled Li–Mn1?xRuxO2 nanocomposites show promising pseudocapacitance performance with large specific capacitances of approximately 330 F g?1 for the second cycle and approximately 360 F g?1 for the 500th cycle and excellent cyclability, which are superior to those of the unsubstituted Li–MnO2 homologue and many other MnO2‐based materials. Electrochemical impedance spectroscopy analysis provides strong evidence for the enhancement of the electrical conductivity of 2 D nanostructured manganese oxide upon Ru substitution, which is mainly responsible for the excellent electrode performance of Li–Mn1?xRuxO2 nanocomposites. The results underscore the powerful role of the composition‐controllable metal oxide 2 D nanosheets as building blocks for exploring efficient electrode materials.  相似文献   

5.
A mixture of bulk hexagonal boron nitride (h‐BN) with hydrazine, 30 % H2O2, HNO3/H2SO4, or oleum was heated in an autoclave at 100 °C to produce functionalized h‐BN. The product formed stable colloid solutions in water (0.26–0.32 g L ?1) and N,N‐dimethylformamide (0.34–0.52 g L ?1) upon mild ultrasonication. The yield of “soluble” h‐BN reached about 70 wt %. The dispersions contained few‐layered h‐BN nanosheets with lateral dimensions in the order of several hundred nanometers. The functionalized dispersible h‐BN was characterized by IR spectroscopy, X‐ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV/Vis spectroscopy, X‐ray diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). It is shown that h‐BN preserves its hexagonal structure throughout the functionalization procedure. Its exfoliation into thin platelets upon contact with solvents is probably owing to the attachment of hydrophilic functionalities.  相似文献   

6.
Layered p‐block metal chalcogenides are renowned for thermoelectric energy conversion due to their low thermal conductivity caused by bonding asymmetry and anharmonicity. Recently, single crystalline layered SnSe has created sensation in thermoelectrics due to its ultralow thermal conductivity and high thermoelectric figure of merit. Tin diselenide (SnSe2), an additional layered compound belonging to the Sn‐Se phase diagram, possesses a CdI2‐type structure. However, synthesis of pure‐phase bulk SnSe2 by a conventional solid‐state route is still remains challenging. A simple solution‐based low‐temperature synthesis is presented of ultrathin (3–5 nm) few layers (4–6 layers) nanosheets of Cl‐doped SnSe2, which possess n‐type carrier concentration of 2×1018 cm?3 with carrier mobility of about 30 cm2 V?1 s?1 at room temperature. SnSe2 has a band gap of about 1.6 eV and semiconducting electronic transport in the 300–630 K range. An ultralow thermal conductivity of about 0.67 Wm?1 K?1 was achieved at room temperature in a hot‐pressed dense pellet of Cl‐doped SnSe2 nanosheets due to the anisotropic layered structure, which gives rise to effective phonon scattering.  相似文献   

7.
The structure and properties of materials are determined by a diverse range of chemical bond formation and breaking mechanisms, which greatly motivates the development of selectively controlling the chemical bonds in order to achieve materials with specific characteristics. Here, an orientational intervening bond-breaking strategy is demonstrated for synthesizing ultrathin metal–organic framework (MOF) nanosheets through balancing the process of thermal decomposition and liquid nitrogen exfoliation. In such approach, proper thermal treatment can weaken the interlayer bond while maintaining the stability of the intralayer bond in the layered MOFs. And the following liquid nitrogen treatment results in significant deformation and stress in the layered MOFs’ structure due to the instant temperature drop and drastic expansion of liquid N2, leading to the curling, detachment, and separation of the MOF layers. The produced MOF nanosheets with five cycles of treatment are primarily composed of nanosheets that are less than 10 nm in thickness. The MOF nanosheets exhibit enhanced catalytic performance in oxygen evolution reactions owing to the ultrathin thickness without capping agents which provide improved charge transfer efficiency and dense exposed active sites. This strategy underscores the significance of orientational intervention in chemical bonds to engineer innovative materials.  相似文献   

8.
Two types of layered hydroxide zinc m‐aminobenzoate compounds with structures of layered basic metal salt (LBMS) were prepared by the reaction of zinc hydroxide with m‐aminobenzoic acid solution in the temperature range of 40–120°C. The formation reactions, structures, chemical compositions, and exfoliation reactions of the layered compounds in alcohol solvents were investigated by XRD, TG‐DTA, SEM, and TEM. One layered phase with a basal spacing of 1.08 nm has a α‐Ni(OH)2‐like structure, and its chemical formula can be written as Zn(OH)0.67(m‐NH2C6H4COO)1.33. This phase has strip‐like particle morphology and cannot be exfoliated into its nanosheets in alcohol solvents. The other layered phase with a basal spacing of 2.66 nm has a zinc hydroxide‐nitrate‐like structure, and can be exfoliated in alcohol solvents.  相似文献   

9.
Two‐dimensional (2D) (hydro)oxide materials, that is, nanosheets, enable the preparation of advanced 2D materials and devices. The general synthesis route of nanosheets involves exfoliating layered metal (hydro)oxide crystals. This exfoliation process is considered to be time‐consuming, hindering their industrial‐scale production. Based on in situ exfoliation studies on the protonated layered titanate H1.07Ti1.73O4?H2O (HTO), it is now shown that ion intercalation‐assisted exfoliation driven by chemical reaction provides a viable and fast route to isolated nanosheets. Contrary to the general expectation, data indicate that direct exfoliation of HTO occurs within seconds after mixing of the reactants, instead of proceeding via a swollen state as previously thought. These findings reveal that ion intercalation‐assisted exfoliation driven by chemical reaction is a promising exfoliation route for large‐scale synthesis.  相似文献   

10.
Highly transparent ultrathin films (UTFs) based on alternative layer‐by‐layer assembly of Eu‐ and Tb‐based lanthanide complexes (LCs) and Mg–Al‐layered double hydroxide (LDH) nanosheets are reported herein. UV–visible absorption and fluorescence spectroscopy showed an orderly growth of the two types of ultrathin films upon increasing the number of deposition cycles. AFM and SEM measurements indicate that the films feature periodic layered structures as well as uniform surface morphology. Luminescent investigations reveal that (LCs/LDH)n UTFs can detect Fe3+ with relative selectivity and high sensitivity (Stern–Volmer constant KSV=8.43×103 L mol?1); this suggests that (LCs/LDH)n UTFs could be a promising luminescent probe for selectively sensing Fe3+ ion.  相似文献   

11.
Two‐dimensional (2D) materials are known to be useful in catalysis. Engineering 3D bulk materials into the 2D form can enhance the exposure of the active edge sites, which are believed to be the origin of the high catalytic activity. Reported herein is the production of 2D “few‐layer” antimony (Sb) nanosheets by cathodic exfoliation. Application of this 2D engineering method turns Sb, an inactive material for CO2 reduction in its bulk form, into an active 2D electrocatalyst for reduction of CO2 to formate with high efficiency. The high activity is attributed to the exposure of a large number of catalytically active edge sites. Moreover, this cathodic exfoliation process can be coupled with the anodic exfoliation of graphite in a single‐compartment cell for in situ production of a few‐layer Sb nanosheets and graphene composite. The observed increased activity of this composite is attributed to the strong electronic interaction between graphene and Sb.  相似文献   

12.
Sonochemical reduction of copper nitrate, using 20 kHz ultrasound in aqueous solutions in the presence of urea, led to the formation of layered copper hydroxy nitrate nanosheets, as evidenced by scanning and transmission electron microscopy images. Fourier‐transform infrared, X‐ray diffraction, and X‐ray photoelectron spectroscopy analyses were used to characterize layered Cu2(OH)3NO3 nanosheets. The ultrasound‐assisted progressive hydrolysis of urea and in situ formation of Cu(0) through the sonochemical reduction process induced homogeneous nucleation and crystallization of layered Cu2(OH)3NO3 nanosheets.  相似文献   

13.
Exploring advanced electrocatalysts for electrocatalytic hydrogen evolution is highly desired but remains a challenge due to the lack of an efficient preparation method and reasonable structural design. Herein, we deliberately designed novel Ag/WO3?x heterostructures through a supercritical CO2‐assisted exfoliation‐oxidation route and the subsequent loading of Ag nanoparticles. The ultrathin and oxygen vacancies‐enriched WO3?x nanosheets are ideal substrates for loading Ag nanoparticles, which can largely increase the active site density and improve electron transport. Besides, the resultant WO3?x nanosheets with porous structure can form during the electrochemical cycling process induced by an electric field. As a result, the exquisite Ag/WO3?x heterostructures show an enhanced hydrogen evolution reaction (HER) activity with a low onset overpotential of ≈30 mV, a small Tafel slope of ≈40 mV dec?1 at 10 mA cm?2, and as well as long‐term durability. This work sheds light on material design and preparation, and even opens up an avenue for the development of high‐efficiency electrocatalysts.  相似文献   

14.
A colloidal suspension of exfoliated, layered cobalt oxide nanosheets has been synthesized through the intercalation of quaternary tetramethylammonium ions into protonated lithium cobalt oxide. According to atomic force microscopy, exfoliated nanosheets of layered cobalt oxide show a plateau‐like height profile with nanometer‐level height, underscoring the formation of unilamellar 2D nanosheets. The exfoliation of layered cobalt oxide was cross‐confirmed by X‐ray diffraction, UV/Vis spectroscopy, and transmission electron microscopy. The maintenance of the hexagonal in‐plane structure of the cobalt oxide lattice after the exfoliation process was evidenced by selected‐area electron diffraction and Co K‐edge X‐ray absorption near‐edge structure analysis. The zeta‐potential measurements clearly demonstrated the negative surface charge of cobalt oxide nanosheets. Adopting the nanosheets of layered cobalt oxide as a precursor, we were able to prepare the monodisperse CoO nanocrystals with a particle size of ≈10 nm as well as the heterolayered film composed of cobalt oxide monolayer and polycation.  相似文献   

15.
Two‐dimensional (2D) semiconducting nanosheets have emerged as an important field of materials, owing to their unique properties and potential applications in areas ranging from electronics to catalysis. However, the controlled synthesis of ultrathin 2D nanosheets remains a great challenge, due to the lack of an intrinsic driving force for anisotropic growth. High‐quality ultrathin 2D FeSe2 nanosheets with average thickness below 7 nm have been synthesized on large scale by a facile solution method, and a formation mechanism has been proposed. Due to their favorable structural features, the as‐synthesized ultrathin FeSe2 nanosheets exhibit excellent electrocatalytic activity for the reduction of triiodide to iodide and low charge‐transfer resistance at the electrolyte–electrode interface in dye‐sensitized solar cells (DSSCs). The DSSCs with FeSe2 nanosheets as counter electrode material achieve a high power conversion efficiency of 7.53 % under a simulated solar illumination of 100 mW cm?2 (AM 1.5), which is comparable with that of Pt‐based devices (7.47 %).  相似文献   

16.
The study of the nonisothermal crystallization behavior of layered silicates micro‐ and nano‐biocomposites based on poly(butylene adipate‐co‐terephthalate) (PBAT), a biodegradable copolyester, has been carried out with different theoretical models. They were applied and developed with the aim to describe and better understand the influence of the layered silicates dispersion on crystallization. The nucleation efficiency of the layered silicates has been demonstrated with the use of the “Modified Avrami model,” thanks to the higher crystallization rate parameter, Zc, and of the lower crystallization half‐time, t1/2, compared to the neat matrix. The crystallization activation energies, Ea, calculated from “Kissinger's model” have shown that layered silicates have a negative effect on the crystallite growth process. Thus, these analyses have shown that layered silicates have a double effect on the crystallization process. These two opposites' phenomena depend on the dispersion quality and are more pronounced for the intercalated nano‐biocomposites. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1503–1510, 2007  相似文献   

17.
Recently, the fabrication of ordered luminescent ultrathin film (UTF) materials based on layered double hydroxides (LDHs) has received much attention. However, how to obtain these UTFs assembled by small anions and LDHs nanosheets is still a challenge. Herein, perylene 3,4,9,10‐tetracarboxylate (PTCB) was firstly chosen as the anion with the aim to obtain PTCB/LDH UTFs, which cannot be formed based on typical layer‐by‐layer (LBL) method. Then, the polymer anions (such as poly 4‐styrene sulfonate (PSS) and poly vinyl sulfonate (PVS)) were further chosen as the co‐assembled units with PTCB, which can act as carriers to assemble with LDH nanosheets. The as‐obtained PTCB@PSS/LDH and PTCB@PVS/LDH UTFs present long range ordered structures confirmed by powder X‐ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Moreover, these two UTF systems show polarized luminescence with the emissive anisotropy of ca. 0.62 and 0.73. Therefore, this work presents an exfoliation‐coassembly way to develop LDH‐based ordered luminescent films, which may benefit their future optical display applications.  相似文献   

18.
Two‐dimensional nanosheets with high specific surface areas and fascinating physical and chemical properties have attracted tremendous interests because of their promising potentials in both fundamental research and practical applications. However, the problem of developing a universal strategy with a facile and cost‐effective synthesis process for multi‐type ultrathin 2 D nanostructures remains unresolved. Herein, we report a generalized low‐temperature fabrication of scalable multi‐type 2 D nanosheets including metal hydroxides (such as Ni(OH)2, Co(OH)2, Cd(OH)2, and Mg(OH)2), metal oxides (such as ZnO and Mn3O4), and layered mixed transition‐metal hydroxides (Ni‐Co LDH, Ni‐Fe LDH, Co‐Fe LDH, and Ni‐Co‐Fe layered ternary hydroxides) through the rational employment of a green soft‐template. The synthesized crystalline inorganic nanosheets possess confined thickness, resulting in ultrahigh surface atom ratios and chemically reactive facets. Upon evaluation as electrode materials for pseudocapacitors, the Ni‐Co LDH nanosheets exhibit a high specific capacitance of 1087 F g?1 at a current density of 1 A g?1, and excellent stability, with 103 % retention after 500 cycles. This strategy is facile and scalable for the production of high‐quality ultrathin crystalline inorganic nanosheets, with the possibility of extension to the preparation of other complex nanosheets.  相似文献   

19.
Synthesizing nanomaterials with anisotropic architectures, especially two‐dimensional (2D) nanosheets (NSs), is a key focus of materials science research. Metal sulfide nanosheets (MSNSs) are typically obtained involving exfoliation of bulk metal sulfides with layered structures. The synthesis of NSs of intrinsically non‐layered metal sulfides has received relatively less attention. Metal alkanethiolates with lamellar structures are now shown to serve as effective scaffolds for constructing NSs. A novel photochemical step was employed to transform 2D metal thiolates into MSNSs. By this strategy the 2D nature of metal thiolate precursors was preserved in the final products, resulting in the successful synthesis of NSs of binary PbS, CdS, and Cu9S5, as well as ternary wurtzite CuInS2, Cu2SnS3. Results encourage the wider utilization of photochemical strategies in the synthesis of anisotropic MSNSs.  相似文献   

20.
Colloidal nanosheets of nickel–manganese layered double hydroxides (LDHs) have been synthesized in high yields through a facile reverse micelle method with xylene as an oil phase and oleylamine as a surfactant. Electron microscopy studies of the product revealed the formation of colloidal nanoplatelets with sizes of 50–150 nm, and X‐ray diffraction, energy dispersive X‐ray spectroscopy, and X‐ray photoelectron spectroscopy studies showed that the Ni–Mn LDH nanosheets had a hydrotalcite‐like structure with a formula of [Ni3Mn(OH)8](Cl?) ? n H2O. We found that the presence of both Ni and Mn precursors was required for the growth of Ni‐Mn LDH nanosheets. As pseudocapacitors, the Ni–Mn LDH nanosheets exhibited much higher specific capacitance than unitary nickel hydroxides and manganese oxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号