首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method using nanoparticle TiO2 as solid-phase extractant coupled with ICP-AES was proposed for simultaneous determination of trace elements. The adsorption behavior of nanometer TiO2 towards Cu, Cr, Mn and Ni was investigated by ICP-AES, and the adsorption pH curves, adsorption isotherms and adsorption capacities were obtained. It was found that the adsorption rates of the metal ions studied were more than 90% in pH 8.0-9.0, and 2.0 mol L-1 HCl was sufficient for complete elution. Nanometer TiO2 possesses a significant capacity for the sorption of the metal ions studied which is higher than the capacity of silica, the commonly used extractant. The method has been applied to the analysis of some environmental samples with satisfactory results.  相似文献   

2.
A new method using nanoparticle TiO2 as solid-phase extractant coupled with ICP-AES was proposed for simultaneous determination of trace elements. The adsorption behavior of nanometer TiO2 towards Cu, Cr, Mn and Ni was investigated by ICP-AES, and the adsorption pH curves, adsorption isotherms and adsorption capacities were obtained. It was found that the adsorption rates of the metal ions studied were more than 90% in pH 8.0~9.0, and 2.0 mol L–1 HCl was sufficient for complete elution. Nanometer TiO2 possesses a significant capacity for the sorption of the metal ions studied which is higher than the capacity of silica, the commonly used extractant. The method has been applied to the analysis of some environmental samples with satisfactory results.  相似文献   

3.
建立了在表面活性剂十二烷基硫酸钠(SLS)的活化作用下,桑色素修饰的纳米TiO2分离富集,电感耦合等离子体原子发射光谱(ICP-AES)测定Cr3+和A l3+的新方法。考察了溶液pH、洗脱条件和干扰离子等因素对分析物分离富集的影响。结果表明,在pH 3.0时,Cr3+和A l3+可被桑色素修饰的纳米TiO2定量富集,吸附的金属离子可用1.5 mL 0.50 mol/L HC l溶液完全洗脱。在优化的实验条件下,纳米TiO2-桑色素对Cr3+和A l3+的吸附容量分别为9.69 mg/g和12.76 mg/g。本法对Cr3+和A l3+的检出限(3σ)分别为:0.21和0.49 ng/mL,相对标准偏差(RSD)分别为2.2%和1.6%(n=11,C=50 ng/mL)。本法应用于藏药和扇贝标准样品(GBW 10024)中Cr3+和A l3+的测定,测定值与标准值基本吻合,分析结果满意。  相似文献   

4.
纳米氧化钕的制备及其催化性能的研究   总被引:12,自引:0,他引:12       下载免费PDF全文
Nanometer-sized neodymium oxide has been synthesized by humid solid state reaction at room temperature, and characterized by scanning electron microscope, laser light scattering and X-ray diffraction. The effects of nanometer -sized neodymium oxide on catalyzing thermal decomposition reaction of hexogen (cyclotrimethylenetriamine, RDX) and absorbent powder (nitrocellulose absorbed nitroglycerin, NC/NG) have been investigated by DSC method. The mechanism of these catalytic reactions has also been proposed. The experimental results show that nanometer-sized neodymium oxide can catalyze the decomposition reaction of RDX and NC/NG effectively. The experimental results further suggest that nanometer-sized neodymium oxide is a potentially useful combustion catalyst of nitroamine propellant.  相似文献   

5.
A novel strategy to synthesize a functional mesoporous material for efficient removal of cesium is reported. Specifically, Prussian blue derivate‐modified SBA‐15 (SBA‐15@FC) was prepared by photoinitiated thiol–ene reaction between thiol‐modified SBA‐15 and pentacyano(4‐vinyl pyridine)ferrate complex. The effects of weight percentage of the Prussian blue derivate, pH, adsorbent dose, co‐existing ions, and initial concentration were evaluated on the adsorption of cesium ions. The adsorption kinetically follows a pseudo‐second‐order model and reaches equilibrium within 2 h with a high adsorption capacity of about 13.90 mg Cs g?1, which indicates that SBA‐15@FC is a promising adsorbent to effectively remove cesium from aqueous solutions.  相似文献   

6.
The influence of type of zeolite and the flow rate of solution through the column on the removal efficiency of radioactive cesium ions from solution has been investigated. The analysis of the change in the concentration of cesium ions in the solutions and distribution of cesium ions in the column fillings (granulated zeolites), after passing the solutions through the columns filled with various granulated zeolites (zeolite 4A, zeolite 13X, synthetic mordenite) was performed. On the basis of the results of this study, the conditions for the most efficient removal of cesium ions from solutions have been discussed.  相似文献   

7.
Stereoregular poly(methyl methacrylate)s (PMMAs) were stepwise assembled on a quartz crystal microbalance (QCM) substrate after the immersion of the QCM into alternating acetonitrile solutions at ambient temperature. A quantitative QCM analysis at each step showed stereocomplex formation on the substrate surface. The adsorption of bovine serum albumin (BSA) onto stereocomplex films with a molecularly regulated nanostructure was analyzed quantitatively. The adsorption constant and the maximum adsorption amount, calculated by the assumption of Langmuir‐type adsorption, showed that BSA adsorbed with a relatively weak interaction onto the stereocomplex films. The BSA adsorption onto the stereocomplex films occurred in an end‐on manner, with a smaller adsorption constant than for that onto individual spin‐coated films. The amount of BSA adsorbed was significantly affected by the molecular weight of syndiotactic PMMA. Attenuated total reflection spectra indicated that BSA adsorbed onto the films with or without denaturing. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1807–1812, 2003  相似文献   

8.
Uric acid (UA) produced from purine metabolism is rather harmful to human health when its concentration is high. To better understand the application of hydroxyapatite (HAP) as an adsorbent for UA removal, quartz crystal microbalance (QCM) technique was employed to in situ investigate the adsorption behavior of UA on nanosized HAP coatings. This work was mainly focused on the mechanism and kinetics of UA adsorption. The obtained results showed that nanosized HAP coatings produced physical adsorption for UA, and the driving force of UA adsorption on HAP coatings was electrostatic interaction. The adsorption kinetic parameter estimated from the in situ frequency measurement was about 3.08?×?106?L/mol. The obtained information suggests that QCM measurement provides a useful method for monitoring the interaction between HAP and UA.  相似文献   

9.
We present a simple and effective method for the synthesis of nanostructured Fe3O4 micron‐spheres (NFMSs) by annealing hydrothermally formed FeCO3 spheres in argon. The phase structure, particle size, and magnetic properties of the product have been characterized by X‐ray diffraction (XRD), Fourier‐transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), field‐emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and by means of a superconducting quantum interference device (SQUID). The results have shown that the as‐obtained NFMSs have a diameter of about 5 μm and are composed of nanometer‐sized porous lamellae. The NFMSs have a large specific surface area (135.9 m2 g?1), reductive Fe2+ incorporated into their structure, and intense magnetic properties. These properties suggest that NFMSs have potential application in removing toxic Cr6+ ions from polluted water. At 25 °C, each gram of NFMSs product can remove 43.48 mg of Cr6+ ions, as compared to just 10.2 mg for nanometer‐sized Fe3O4 and 1.89 mg for micron‐sized Fe3O4. The enhanced removal performance can be ascribed to the structural features. Moreover, the Cr6+ ion removal capacity of the NFMSs can reach up to 71.2 mg g?1 at 50 °C. The influencing parameters in the removal of Cr6+ ions, such as contact time, pH, and temperature, have been evaluated. The Cr6+‐removal mechanism has been investigated. We have found that the NFMSs product not only serves as an effective adsorbent to remove toxic Cr6+ ions from polluted water, but also as an effective reductant in reducing the adsorbed toxic Cr6+ ions to much less toxic Cr3+ through the Fe2+ incorporated into its structure.  相似文献   

10.
137Cs and134Ba were removed from synthetic aqueous solutions by means of natural zeolites of Slovakian origin. The equilibrium sorption behavior of Cs and Ba ions onto clinoptilolite and mordenite were studied under static as well as dynamic experimental conditions. Both Freundlich and Langmuir isotherms describe satisfactory by Cs and Ba adsorption on the zeolites studied. The elution of Cs and Ba ions from zeolite columns after the loading cycle was undertaken additionaly, in order to compare column operating runs of various exchanged zeolite forms.  相似文献   

11.
The quartz crystal microbalance was employed to study the adsorption behavior of bilirubin on human-albumin layer, which was chemically bound to the self-assembled monolayer of 4-aminothiophenol on the surface of a gold electrode of the crystal via glutaraldehyde. A long-time adsorption process of bilirubin that took place on a human-albumin-modified surface was observed, and the adsorption kinetic parameters were estimated from the in situ frequency measurements. The amount of adsorbed bilirubin increased with increasing of both hydrogen ions and bilirubin concentration and was larger than that estimated based on the conclusion that there are two affinity sites for bilirubin per albumin molecule. With the present method, the displacement of bilirubin from an albumin layer caused by aspirin was also examined. QCM measurement provides a facile method for in situ monitoring of the adsorption/desorption of bilirubin on proteins layers.  相似文献   

12.
Adsorption and thermodynamic behavior of uranium on natural zeolite   总被引:2,自引:0,他引:2  
Adsorptive behavior of natural clinoptilolite-rich zeolite from Balikesir deposites in Turkey was assessed for the removal of uranium from aqueous solutions. The uranium uptake and cation exchange capacities of zeolite were determined. The effect of initial uranium concentrations in solution was studied in detail at the optimum conditions determined before (pH 2.0, contact time: 60 minutes, temperature: 20 °C). The uptake equilibrium is best described by Langmuir adsorption isotherm. Some thermodynamic parameters (ΔH°, ΔS°, ΔG°) of the adsorption system were also determined. Application to fixation of uranium to zeolite was performed. The uptake of uranium complex on zeolite followed Langmuir adsorption isotherm for the initial concentration (25 to 100 μg/ml). Thermodynamic values of ΔG°, ΔS° and ΔH° found show the spontaneous and exothermic nature of the process of uranium ions uptake by natural zeolite. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
陈磊  卢鹏  袁扬扬  徐力  张晓敏  许磊 《催化学报》2016,(8):1381-1388
分子筛结构的独特性和多样性使其在催化、吸附分离和离子交换等领域有着广泛应用.近年来,纳米分子筛制备和应用受到极大关注.与传统微米分子筛相比,纳米分子筛具有较小的晶粒尺寸、较大的外表面积和较高的表面活性,能显著提高其分离和催化性能.制备纳米晶体的常用方法有过量模板法、空间限定法、晶种法、离子热合成法及微反应器合成法等.目前,已合成出多种拓扑结构的纳米分子筛,包括 FAU, MFI, MEL和CHA等. ZSM-22是一种具有 TON拓扑结构的一维十元环直孔道分子筛(孔口尺寸为0.45 nm ×0.55 nm),在长链烷烃异构化和烯烃异构化等反应中表现出优异的催化活性.水热合成法是制备 ZSM-22分子筛最常用的方法,所得样品晶粒尺寸为2–15μm,但由于 ZSM-22分子筛是一种亚稳态结构,为了防止杂晶生成,合成通常是在剧烈搅拌(通常大于400 r/min)下进行.目前已有报道在较低转速下合成 ZSM-22分子筛,但产物仍为微米晶体;或在微波辅助水热合成条件下合成亚微米 ZSM-22分子筛,但晶体尺寸不可调且合成过程需要较高功率的微波反应器.因此,在水热条件下合成纯纳米 ZSM-22分子筛仍然是一个巨大挑战.本文在上述研究基础上采用改进的水热合成法成功合成出纳米 ZSM-22分子筛,考察了转速﹑硅铝比及乙醇共溶剂对晶粒尺寸的影响,比较了纳米和常规微米 ZSM-22分子筛的甲醇转化反应性能.结果表明,采用改进的水热合成法能够在较低转速下合成出纳米 ZSM-22分子筛,晶体尺寸在150–800 nm范围可调.通过考察转速对晶粒尺寸的影响,发现静态合成条件下无法形成 ZSM-22分子筛,表明 ZSM-22分子筛合成需要一定的转速.转速在10–50 r/min变化时,可以合成出不同晶体尺寸的 ZSM-22分子筛,且随转速提高, ZSM-22分子筛晶体尺寸先减小后增大,表明纳米 ZSM-22分子筛合成存在最佳转速.另外,配料硅铝比能显著影响 ZSM-22分子筛晶体尺寸,随配料硅铝比增加, ZSM-22分子筛晶体尺寸先减小后增大.通过在合成体系中添加乙醇作为共溶剂,考察了有机溶剂对 ZSM-22分子筛晶粒尺寸的影响,发现有机溶剂能显著增大 ZSM-22的晶体尺寸.将本文合成的纳米和常规微米 ZSM-22分子筛用于甲醇转化反应,考察了晶体尺寸对 ZSM-22分子筛甲醇转化反应性能的影响.发现与常规微米 ZSM-22分子筛相比,纳米 ZSM-22分子筛催化剂寿命显著提高,说明晶粒尺寸减小能有效减缓积碳导致的分子筛失活;同时,反应产物中乙烯和芳烃选择性有所提高,这是由于外表面积增大所致.此外,还考察了不同硅铝比 ZSM-22分子筛的甲醇转化反应性能.结果表明,分子筛硅铝比会影响催化剂寿命,但晶体尺寸对催化剂寿命影响更大. ZSM-22分子筛硅铝比增大有助于提高低碳烯烃选择性,减少芳烃生成.  相似文献   

14.
Fluoride in drinking water above permissible levels is responsible for human dental and skeletal fluorosis. In this study, therefore, the large internal surface area of zeolite was utilized to create active sites for fluoride sorption by exchanging Na+-bound zeolite with Al3+ or La3+ ions. Fluoride removal from water using Al3+- and La3+-exchanged zeolite F-9 particles was subsequently investigated to evaluate the fluoride sorption characteristics of the sorbents. Equilibrium isotherms such as the two-site Langmuir (L), Freundlich (F), Langmuir-Freundlich (LF), Redlich-Peterson (RP), Toth (T), and Dubinin-Radushkevitch (DR) were successfully used to model the experimental data. Modeling results showed that the isotherm parameters weakly depended on the solution temperature. From the DR isotherm parameters, it was considered that the uptake of fluoride by Al3+-exchanged zeolite proceeded by an ion-exchange mechanism (E = 11.32-12.13 kJ/mol), while fluoride-La3+-exchanged zeolite interaction proceeded by physical adsorption (E = 7.41-7.72 kJ/mol). Factors from the solution chemistry that affected fluoride removal from water were the solution pH and bicarbonate content. The latter factor buffered the system pH at higher values and thus diminished the affinity of the active sites for fluoride. Natural groundwater samples from two Kenyan tube wells were tested and results are discussed in relation to solution chemistry. In overall, Al3+-exchanged zeolite was found to be superior to La3+-exchanged zeolite in fluoride uptake within the tested concentration range.  相似文献   

15.
The scope of this study is ammonium-ion uptake from synthetic aqueous solutions onto raw and pretreated forms of the natural zeolite Transcarpathian clinoptilolite under dynamic conditions. Hydrogen ions displaced exchangeable cations on the clinoptilolite in distilled water (sodium ions) and hydrochloric acid (sodium, potassium, and calcium ions) and destroyed the zeolite framework structure in the last case. Ammonium uptake onto the zeolite occurs by exchange with Na(+), Ca(2+), and K(+) ions. Although Na(+) ions were observed to be more easily exchanged for both hydrogen and ammonium ions, the role of Ca(2+) ions increased with zeolite saturation by NH(+)(4) ions. The maximum sorption capacity of the clinoptilolite toward NH(+)(4) ions, estimated under dynamic conditions, is significantly higher than that measured under static conditions; proximity of the values of a distribution coefficient and a retardation factor for different conditions (215-265 dm(3)/kg and 979-1107, respectively) allows us to use these parameters to model ammonium uptake onto the clinoptilolite. Slowing down or interruption in filtration resulted in the improvement of ammonium sorption properties of the zeolite. The ammonium removal improves with use of the finer fractions of the clinoptilolite up to 0.35 mm. A recycling study results confirmed the importance of external diffusion for ammonium sorption by the clinoptilolite. Preliminary treatment of the sorbent confirmed the predominant importance of the ion-exchange mechanism. The advantage of prior NaCl treatment of the clinoptilolite in improvement of ammonium removal over the other techniques was shown.  相似文献   

16.
Colloidal zeolites NaA (LTA structure type) and ZSM-5 (MFI-type) with crystal diameters of about 100 nm were synthesized as building blocks for the formation of microporous self-limiting monolayers on the piezo-active area (gold electrodes) of a quartz crystal microbalance (QCM). Two different coupling strategies were explored, concerning the modification of either the gold substrate or the external zeolite crystal surface with a bifunctional molecular interface. Diverse analytical methods were employed to fully characterize the materials (dynamic light scattering, X-ray diffraction, infrared and Raman spectroscopy, solid state 29Si NMR spectroscopy, N2 sorption) and to study the process of coupling the zeolite crystals to the gold surface (reflection-absorption IR spectroscopy, scanning electron microscopy). The molecularly selective sensing behavior of these zeolite-coated devices is demonstrated by measuring the full adsorption isotherms of n-butane and i-butane in the microporous films.  相似文献   

17.
Confined space synthesis. A novel route to nanosized zeolites   总被引:1,自引:0,他引:1  
Confined space synthesis is a novel method in zeolite synthesis. It involves crystallization of the zeolite inside the pore system of an inert mesoporous matrix. In this way it is possible to prepare nanosized zeolites with a controlled size distribution by proper choice of the inert matrix. Here, confined space synthesis was adopted to prepare nanosized ZSM-5, zeolite Beta, zeolite X, and zeolite A with tailored crystal size distributions using mesoporous carbon blacks as inert matrices. All zeolites were characterized by X-ray powder diffraction, transmission electron microscopy, and nitrogen adsorption/desorption prior to and after removal of the carbon matrix. ZSM-5 with Si/Al ratios of 50, 100, and infinity (silicalite-1) were synthesized with controlled average crystal sizes in the range 20-75 nm. Nanosized zeolite Beta (7-30 nm), zeolite X (22-60 nm), and zeolite A (25-37 nm) were prepared similarly. Removal of the carbon matrix by controlled combustion allows a convenient method for isolation of the pure and highly crystalline zeolites. Therefore, confined space synthesis appears to be an attractive method for preparation of zeolites with a controlled size distribution.  相似文献   

18.
Hui Sun  Benxian Shen 《Adsorption》2012,18(2):103-111
The crystallization of zeolite A was monitored by measuring the adsorption capacities of synthetic products. The influences of organic additives on the crystallization process and adsorption performances of zeolite were investigated. SDS (sodium dodecyl sulphonate), TWEEN (Tween-80), and PEG (poly(ethylene glycol)) shorten the induction period by reducing the interfacial energy while SCMC (sodium carboxymethylcellulose) can prolong the induction period by increasing the interfacial energy. TEA (triethanolamine) can also suppress the nucleation through reducing the effective supply of aluminum. All the organic additives but SCMC diminish the rate of crystal growth. CTAB (cetyltrimethylammonium bromide) causes the destruction of crystal structure and reduce the concentration of OH? ions. As a result, the rate of crystal growth is significantly reduced. Meanwhile, PAM (poly(acrylamide)), SDS, TWEEN, HMTA (hexamethylenetetramine), and PEG increase the viscosities of synthesis systems, thus, diminish the growth rate. PAM restrains the transformation of zeolite A crystal into hydroxysodalite one, therefore, tremendously improves the stability of crystals of zeolite A. In addition, PAM can promote the rates of n-hexane adsorption on zeolite 5A because of the impact of PAM on the crystal-size distributions of zeolite 5A.  相似文献   

19.
The ability of a natural Mexican clinoptilolite to sorb radioactive cobalt from aqueous solution was studied. The zeolite was stabilized partially with sodium and the content of Na+ in the samples was determined by neutron activation analysis. Ion exchange experiments were performed with solution labeled with radioactive60Co at pH 6.5. XRD patterns were used to verify if the crystallinity of the aluminosilicate was affected by ionic exchange. A fast sorption uptake was observed and it was found that 0.408 meq/g of zeolite of Na+ ions were replaced by cobalt ions, followed by a desorption process where the uptake decrease to 0.314 meq/g of zeolite. This behavior is a consequence of the partial dehydration of the zeolite.  相似文献   

20.
Nanoscale crystal growth control is crucial for tailoring two‐dimensional (2D) zeolites (crystallites with thickness less than two unit cells) and thicker zeolite nanosheets for applications in separation membranes and as hierarchical catalysts. However, methods to control zeolite crystal growth with nanometer precision are still in their infancy. Herein, we report solution‐based growth conditions leading to anisotropic epitaxial growth of 2D zeolites with rates as low as few nanometers per day. Contributions from misoriented surface nucleation and rotational intergrowths are eliminated. Growth monitoring at the single‐unit‐cell level reveals novel nanoscale crystal‐growth phenomena associated with the lateral size and surface curvature of 2D zeolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号