首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Symmetric‐ and asymmetric hexaarylbenzenes (HABs), each substituted with three electron‐donor triarylamine redox centers and three electron‐acceptor triarylborane redox centers, were synthesized by cobalt‐catalyzed cyclotrimerization, thereby forming compounds with six‐ and four donor–acceptor interactions, respectively. The electrochemical‐ and photophysical properties of these systems were investigated by cyclovoltammetry (CV), as well as by absorption‐ and fluorescence spectroscopy, and compared to a HAB that only contained one neighboring donor–acceptor pair. CV measurements of the asymmetric HAB show three oxidation peaks and three reduction peaks, whose peak‐separation is greatly influenced by the conducting salt, owing to ion‐pairing and shielding effects. Consequently, the peak‐separations cannot be interpreted in terms of the electronic couplings in the generated mixed‐valence species. Transient‐absorption spectra, fluorescence‐solvatochromism, and absorption spectra show that charge‐transfer states from the amine‐ to the boron centers are generated after optical excitation. The electronic donor–acceptor interactions are weak because the charge transfer has to occur predominantly through space. Moreover, the excitation energy of the localized excited charge‐transfer states can be redistributed between the aryl substituents of these multidimensional chromophores within the fluorescence lifetime (about 60 ns). This result was confirmed by steady‐state fluorescence‐anisotropy measurements, which further indicated symmetry‐breaking in the superficially symmetric HAB. Adding fluoride ions causes the boron centers to lose their accepting ability owing to complexation. Consequently, the charge‐transfer character in the donor–acceptor chromophores vanishes, as observed in both the absorption‐ and fluorescence spectra. However, the ability of the boron center as a fluoride sensor is strongly influenced by the moisture content of the solvent, possibly owing to the formation of hydrogen‐bonding interactions between water molecules and the fluoride anions.  相似文献   

2.
Stille, Suzuki–Miyaura and Negishi cross‐coupling reactions of bromine‐functionalised borylated precursors enable the facile, high yielding, synthesis of borylated donor–acceptor materials that contain electron‐rich aromatic units and/or extended effective conjugation lengths. These materials have large Stokes shifts, low LUMO energies, small band‐gaps and significant fluorescence emission >700 nm in solution and when dispersed in a host polymer.  相似文献   

3.
《化学:亚洲杂志》2017,12(18):2494-2500
Donor–acceptor–donor (D–A–D)‐type thermally activated delayed fluorescence (TADF) emitters 5,5′‐bis{4‐[9,9‐dimethylacridin‐10(9H )‐yl]phenyl}‐2,2′‐bipyrimidine (Ac‐bpm) and 5,5′‐bis[4‐(10H ‐phenoxazin‐10‐yl)phenyl]‐2,2′‐bipyrimidine (Px‐bpm), based on the 2,2′‐bipyrimidine accepting unit, were developed and their TADF devices were fabricated. The orthogonal geometry between the donor unit and the 2,2′‐bipyrimidine accepting core facilitated a HOMO/LUMO spatial separation, thus realizing thermally activated delayed fluorescence. The exhibited electroluminescence ranged from green to yellow, depending on the donor unit, with maximum external quantum efficiencies of up to 17.1 %.  相似文献   

4.
Pentacyclic diindeno[1,2‐b:2′,1′‐d]thiophene ( DIDT ) unit is a rigid and coplanar conjugated molecule. To the best of our knowledge, this attractive molecule has never been incorporated into a polymer and thus its application in polymer solar cells has never been explored. For the first time, we report the detailed synthesis of the tetra‐alkylated DIDT molecule leading to its dibromo‐ and diboronic ester derivatives, which are the key monomers for preparation of DIDT ‐based polymers. Two donor–acceptor alternating polymers, poly(diindenothiophene‐alt‐benzothiadiazole) PDIDTBT and poly(diindenothiophene‐alt‐dithienylbenzothiadiazole) PDIDTDTBT , were synthesized by using Suzuki polymerization. Copolymer PTDIDTTBT was also prepared by using Stille polymerization. Although PTDIDTTBT is prepared through a manner of random polymerization, we found that the different reactivities of the dibromo‐monomers lead to the resulting polymer having a block copolymer arrangement. With the higher structural regularity, PTDIDTTBT , symbolized as (thiophene‐alt‐ DIDT )0.5block‐(thiophene‐alt‐BT)0.5, shows the higher degree of crystallization, stronger π–π stacking, and broader absorption spectrum in the solid state, as compared to its alternating PDIDTDTBT analogue. Bulk heterojunction photovoltaic cells based on ITO/PEDOT:PSS/polymer:PC71BM/Ca/Al configuration were fabricated and characterized. PDIDTDTBT /PC71BM and PTDIDTTBT /PC71BM systems exhibited promising power‐conversion efficiencies (PCEs) of 1.65 % and 2.00 %, respectively. Owing to the complementary absorption spectra, as well as the compatible structures of PDIDTDTBT and PTDIDTTBT , the PCE of the device based on the ternary blend PDIDTDTBT / PTDIDTTBT /PC71BM was further improved to 2.40 %.  相似文献   

5.
To shed light on intramolecular charge‐transfer phenomena in 1,2,3‐triazole‐linked materials, a series of 1,2,3‐triazole‐linked push–pull chromophores were prepared and studied experimentally and computationally. Investigated modifications include variation of donor and/or acceptor strength and linker moiety as well as regioisomers. Photophysical characterization of intramolecular charge‐transfer features revealed ambipolar behavior of the triazole linker, depending on the substitution position. Furthermore, non‐centrosymmetric materials were subjected to second‐harmonic generation measurements, which revealed the high nonlinear optical activity of this class of materials.  相似文献   

6.
Functional organic materials that display reversible changes in fluorescence in response to external stimuli are of immense interest owing to their potential applications in sensors, probes, and security links. While earlier studies mainly focused on changes in photoluminescence (PL) color in response to external stimuli, stimuli‐responsive electroluminescence (EL) has not yet been explored for color‐tunable emitters in organic light‐emitting diodes (OLEDs). Here a stimuli‐responsive fluorophoric molecular system is reported that is capable of switching its emission color between green and orange in the solid state upon grinding, heating, and exposure to chemical vapor. A mechanistic study combining X‐ray diffraction analysis and quantum chemical calculations reveals that the tunable green/orange emissions originate from the fluorophore's alternating excited‐state conformers formed in the crystalline and amorphous phases. By taking advantage of this stimuli‐responsive fluorescence behavior, two‐color emissive OLEDs were produced using the same fluorophore in different solid phases.  相似文献   

7.
8.
A new strategy for cascade assembly of substituted indenes and polycyclic lactones based on reactions of donor–acceptor cyclopropanes and styrylmalonates with aromatic aldehydes in the presence of GaCl3 has been developed. The use of GaCl3 makes it possible to principally change the direction of the reaction known in this series of substrates and to perform the process in a multicomponent version. Generation of formal 1,2‐zwitterionic intermediates owing to complexation of dicarboxylate groups with GaCl3 is the driving force of the reactions discovered. This method makes it possible to assemble indenylmalonates or indano[1′,2′:2,3]indano[2,1‐b]furan‐2‐ones in one synthetic stage from readily available starting compounds with high regio‐ and diastereoselectivity. A mechanism of the reactions has been suggested using the 18O label in benzaldehyde.  相似文献   

9.
Axially chiral, N‐arylated 3,5‐dihydro‐4H‐dinaphtho[2,1‐c:1′,2′‐e]azepines have been prepared by short synthetic protocols from enantiopure 1,1′‐bi(2,2′‐naphthol) (BINOL) and anilines. Alkynes substituted with two N‐phenyldinaphthazepine donors readily undergo a formal [2+2] cycloaddition, followed by retro‐electrocyclization, with tetracyanoethene (TCNE) to yield donor‐substituted 1,1,4,4‐tetracyanobuta‐1,3‐dienes (TCBDs) featuring intense intramolecular charge‐transfer (CT) interactions. A dicyanovinyl derivative substituted with one N‐phenyldinaphthazepine donor was obtained by a “one‐pot” oxidation/Knoevenagel condensation from the corresponding propargylic alcohol. Comparative electrochemical, X‐ray crystallographic, and UV/Vis studies show that the electron‐donor qualities of N‐phenyldinaphthazepine are similar to those of N,N‐dimethylanilino residues. The circular dichroism (CD) spectrum of a push–pull chromophore incorporating the chiral donor moiety features Cotton effects of exceptional intensity. With their elongated shape and the rigidity of the chiral N‐aryldinaphthazepine donors, these chromophores are effective inducers of twist distortion in nematic liquid crystals (LCs). Thus, a series of the dinaphthazepine derivatives was used as dopants in the nematic LC E7 (Merck) and high helical twisting powers (β) of the order of hundreds of μm?1 were measured. Theoretical calculations were employed to elucidate the relation between the structure of the dopants and their helical twisting power. For the derivatives with two dinaphthazepine moieties, a strong dependence of the β‐values on the structure and conformation of the linker between them was found.  相似文献   

10.
Push–pull molecules represent a unique and fascinating class of organic π‐conjugated materials. Herein, we provide a summary of their recent extraordinary design inspired by letters of the alphabet, especially focusing on H‐, L‐, T‐, V‐, X‐, and Y‐shaped molecules. Representative structures from each class were presented and their fundamental properties and prospective applications were discussed. In particular, emphasis is given to molecules recently prepared in our laboratory with T‐, X‐, and Y‐shaped arrangements based on indan‐1,3‐dione, benzene, pyridine, pyrazine, imidazole, and triphenylamine. These push–pull molecules turned out to be very efficient charge‐transfer chromophores with tunable properties suitable for second‐order nonlinear optics, two‐photon absorption, reversible pH‐induced and photochromic switching, photocatalysis, and intercalation.

  相似文献   


11.
We have synthesized two new low‐molecular‐mass organogelators based on tri‐p‐phenylene vinylene derivatives, one of which could be designated as the donor whereas the other one is an acceptor. These were prepared specifically to show the intergelator interactions at the molecular level by using donor–acceptor self‐assembly to achieve appropriate control over their macroscopic properties. Intermolecular hydrogen‐bonding, π‐stacking, and van der Waals interactions operate for both the individual components and the mixtures, leading to the formation of gels in the chosen organic solvents. Evidence for intergelator interactions was acquired from various spectroscopic, microscopic, thermal, and mechanical investigations. Due to the photochromic nature of these molecules, interesting photophysical properties, such as solvatochromism and J‐type aggregation, were clearly observed. An efficient energy transfer was exhibited by the mixture of donor–acceptor assemblies. An array of four chromophores was built up by inclusion of two known dyes (anthracene and rhodamine 6G) for the energy‐transfer studies. Interestingly, an energy‐transfer cascade was observed in the assembly of four chromophores in a particular order (anthracene‐donor‐acceptor‐rhodamine 6G), and if one of the components was removed from the assembly the energy transfer process was discontinued. This allowed the build up of a light‐harvesting process with a wide range. Excitation at one end produces an emission at the other end of the assembly.  相似文献   

12.
Double the fun! Singlet–triplet dual emission at ambient temperature has been achieved in compounds containing a triarylboron acceptor and an N‐(2′‐pyridyl)‐7‐azaindolyl donor group bridged by a tetrahedral Si linker (see figure). PtII chelation and chelate‐mode switching from N,N to N,C have been found to greatly enhance phosphorescent emission. Furthermore, both singlet and triplet emission bands are responsive to fluoride ions.

  相似文献   


13.
A range of covalently linked donor–acceptor compounds which contain 1) a hydroquinone (HQ) unit, 2) a 1,5‐dioxynaphthalene (DNP) ring system, or 3) a tetrathiafulvalene (TTF) unit as the π‐donor, and 4) cyclobis(paraquat‐p‐phenylene) (CBPQT4+) as the π‐accepting tetracationic cyclophane were prepared and shown to operate as simple molecular machines. The π‐donating arms can be included inside the cyclophane in an intramolecular fashion by virtue of stabilizing noncovalent bonding interactions. What amounts to self‐complexing/decomplexing equilibria were shown to be highly temperature dependent when the π‐donating arm contains either an HQ or DNP moiety. The thermodynamic parameters associated with the equilibria have been unraveled by using variable‐temperature 1H NMR spectroscopy. The negative ΔH° and ΔS° values account for the fact that the “uncomplexed” conformation becomes the dominant species, since the entropy gain associated with the decomplexation process overcomes the enthalpy loss resulting from the breaking of the donor–acceptor interactions. The arm's in‐and‐out movements with respect to the linked cyclophanes can be arrested by installing a bulky substituent at the end of the arm. In the case of compounds carrying a DNP ring system in their side arm, two diastereoisomeric, self‐complexing conformations are observed below 272 K in hexadeuterioacetone. By contrast, control over the TTF‐containing arm's movement is more or less ineffective through the thermally sensitive equilibrium although it can be realized by chemical and electrochemical ways as a result of TTF's excellent redox properties. Such self‐complexing compounds could find applications as thermo‐ and electroswitches. In addition, the thermochromism associated with the arm's movement could lead to some of the compounds finding uses as imaging and sensing materials.  相似文献   

14.
《化学:亚洲杂志》2017,12(15):1935-1943
3‐Hexyloxy‐4‐cyanothiophene, 3‐pyrrolidil‐4‐cyanothiophene, and 3,4‐ethylenedioxythiophene (EDOT) units are used with benzothiadiazole as building blocks for the development of three new conjugated donor–acceptor–donor (DAD) derivatives. The DAD molecules have the central acceptor part, which is formed by combining electron‐withdrawing cyano groups and the benzothiadiazole moiety, in common. Theoretical calculations and UV/Vis and electrochemical data reveal the key role of the end‐capped donor to tune the electronic properties of the derivatives. A study of the electropolymerization process of the three derivatives shows the strong influence of the donor parts on both the reactivity of the precursors and the electronic properties of the resulting polymers. Derivatives end‐capped with pyrrolidinocyano thiophene or EDOT units lead to films of polymers presenting low band gaps of around 0.9–1.4 eV. Upon oxidation, the two polymers present different behavior. In the presence of the pyrrolidinocyano thiophene moieties, oxidation leads to a blueshift of the absorption bands, whereas with EDOT units a classical redshift, giving high absorption in the near‐IR region, is observed for the oxidized states.  相似文献   

15.
Two series of regioisomeric luminophores that contained a dithieno[2,3‐a:3′,2′‐c]phenazine (DTP) unit as an electron acceptor have been designed and synthesized. To investigate the effect of substitution pattern on the optoelectronic properties of these luminophores, electron donors (N,N‐dihexylaniline or N,N‐dihexyl‐4‐vinylaniline) were incorporated at the 2,5‐, 8,11‐, and 9,10‐positions of the DTP unit. We found that the optoelectronic properties of the regioisomeric luminophores were greatly affected by the substitution pattern: functionalization at the 8,11‐positions of the DTP unit was superior to the other two substitution patterns in extending the effective π‐conjugation and strengthening the intramolecular charge‐transfer interactions. Moreover, the insertion of vinyl groups between the DTP and N,N‐dihexylaniline units narrowed the energy band‐gap for isomers 4 and 5 . However, hypsochromically shifted absorption and photoluminescence maxima were observed for isomeric luminophore 6 , in which electron donors were substituted at the 2,5‐positions of the DTP unit. These results should facilitate greater understanding of the structure–property relationships in regioisomeric semiconductors and present a new way to design optoelectronic materials with effective substitution patterns.  相似文献   

16.
Due to the ease of tuning its redox potential, the cobalt‐based redox couple has been extensively applied for highly efficient dye‐sensitized solar cells (DSSCs) with extraordinarily high photovoltages. However, a cobalt electrolyte needs particular structural changes in the organic dye components to obtain such high photovoltages. To achieve high device performance, specific requirements in the molecular tailoring of organic sensitizers still need to be met. Besides the need for large electron donors, studies of the auxiliary acceptor segment of donor–acceptor–π‐acceptor (D‐A‐π‐A) organic sensitizers are still rare in molecular optimization in the context of cobalt electrolytes. In this work, two novel organic D‐A‐π‐A‐type sensitizers ( IQ13 and IQ17 ) have been developed and exploited in cobalt‐ and iodine‐based redox electrolyte DSSCs, specifically to provide insight into the effect of π‐bridge modification in different electrolytes. The investigation has been focused on the additional electron‐withdrawing acceptor capability with grafted long alkoxy chains. Optoelectronic transient measurements have indicated that IQ17 containing a pyrido[3,4‐b]pyrazine moiety bearing long alkoxyphenyl chains is more suitable for application in cobalt‐based DSSCs.  相似文献   

17.
Embedding endohdedral metallofullerenes (EMFs) into electron donor–acceptor systems is still a challenging task owing to their limited quantities and their still largely unexplored chemical properties. In this study, we have performed a 1,3‐dipolar cycloaddition reaction of a corrole‐based precursor with Sc3N@C80 to regioselectively form a [5,6]‐adduct ( 1 ). The successful attachment of the corrole moiety was confirmed by mass spectrometry. In the electronic ground state, absorption spectra suggest sizeable electronic communications between the electron acceptor and the electron donor. Moreover, the addition pattern occurring at a [5,6]‐bond junction is firmly proven by NMR spectroscopy and electrochemical investigations performed with 1 . In the electronically excited state, which is probed in photophysical assays with 1 , a fast electron‐transfer yields the radical ion pair state consisting of the one‐electron‐reduced Sc3N@C80 and of the one‐electron‐oxidized corrole upon its exclusive photoexcitation. As such, our results shed new light on the practical work utilizing EMFs as building blocks in photovoltaics.  相似文献   

18.
19.
20.
New donor–acceptor conjugated copolymers based on alkylthienylbenzodithiophene (BDTT) and alkoxynaphthodithiophene (NDT) have been synthesized and compared with their benzo[1,2‐b:4,5‐b′]dithiophene (BDT)‐based analogues to investigate the effect of the extended π conjugation of the polymer main chain on the physicochemical properties of the polymers. A systematic investigation into the optical properties, energy levels, field‐effect transistor characteristics, and photovoltaic characteristics of these polymers was conducted. Both polymers demonstrated enhanced photovoltaic performance and increased hole mobility compared with the BDT‐based analogue. However, the BDTT‐based polymer (with π‐conjugation extension perpendicular to main chain) gave the highest power conversion efficiency of 5.07 % for the single‐junction polymer solar cell, whereas the NDT‐based polymer (with π‐conjugation extension along the main chain) achieved the highest hole mobility of approximately 0.1 cm2 V?1 s?1 based on the field‐effect transistor; this indicated that extending the π conjugation in different orientations would have a significant influence on the properties of the resulting polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号