首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two multi‐walled carbon nanotube (MWCNT)‐based nanohybrids, MWCNT–ZnTPP and MWCNT–TPP (TPP=5‐[4‐{2‐(4‐formylphenoxy)‐ ethyloxy}phenyl]‐10,15,20‐triphenylporphyrin, ZnTPP=5‐[4‐{(4‐formylphenyl)ethynyl}phenyl]‐10,15,20‐triphenylporphinatozinc(II)), were prepared directly from pristine MWCNTs through 1,3‐dipolar cycloaddition reactions. Covalent attachment of the porphyrins to the surfaces of the MWCNTs was confirmed by Fourier transform infrared spectroscopy, ultraviolet/visible absorption, fluorescence, Raman, and X‐ray photoelectron spectroscopy, elemental analysis, transmission electron microscopy, and thermogravimetric analysis. Attachment of the porphyrin moieties to the surface of the MWCNTs significantly improves the solubility and ease of processing of these MWCNT–porphyrin composite materials. Z‐scan studies reveal that these MWCNT–porphyrin nanohybrids exhibit enhanced nonlinear optical properties under both nanosecond and picosecond laser pulses at λ=532 nm in comparison with free MWCNTs and the free porphyrin chromophores, whereas superior optical limiting performance was displayed by MWCNT–porphyrin composite materials rather than MWCNTs/ZnTPP and MWCNTs/TPP blends, which is consistent with a remarkable accumulation effect as a result of the covalent linkage between the porphyrin and the MWCNTs.  相似文献   

2.
3.
Water‐soluble single‐ and multi‐walled carbon nanotubes (CNTs) were prepared by grafting polyacrylamide chains from the graphitic surface via ceric ion‐induced redox radical polymerization. The reducing functionalities were covalently attached to the tubes by peroxide‐assisted radical reaction. The results showed that polymer chains were grafted onto CNTs by the redox process. The redox radical polymerization initiated by carbon nanotube‐bearing functionalities not only provides a powerful strategy for modifying the carbon nanostructures but also gives us the knowledge of their sidewall chemistry.

  相似文献   


4.
The first bulk electron‐transfer photochromic compound with intrinsic second‐order nonlinear optical (NLO) photoswitching properties has been synthesized. This system employs an electron‐transfer photoactive asymmetric viologen ligand coordinated to a zinc(II) center.  相似文献   

5.
6.
7.
A new and universal synthetic strategy to hybridize metal oxides and conduct polymer nanocomposites has been proposed in this work. The simultaneous reaction process, which includes the generation of metal oxide layers, the oxidation polymerization of monomers, and the in situ formation of polymer–metal oxides sandwich structure is successfully realized and results in the unique hybrid polyaniline (PANI)‐intercalated molybdenum oxide nanocomposites. The peroxomolybdate proved to play a dual role as the precursor of the inorganic hosts and the oxidizing agent for polymerization. The as‐obtained hybrid nanocomposites present a flexible lamellar structure by oriented assembly of conductive PANI chains in the MoO3 interlayer, and thus inherit excellent electrical performance and possess the potential of active electrode materials for electrochemical energy storage. Such uniform lamellar structure together with the anticipated high conductivity of the hybrid PANI/MoO3 nanocomposites afford high specific capacitance and good stability during the charge–discharge cycling for supercapacitor application.  相似文献   

8.
Single‐ and double‐sided functionalized hybrid organic–inorganic Anderson polyoxomolybdates with GaIII and FeIII positioned as central heteroatoms have been synthesized in a mild, two‐step synthesis in an aqueous medium. Compounds 1 – 4 were isolated as hydrated salts, [TBA]3[GaMo6O18(OH)3{(OCH2)3CCH2OH}]×12 H2O ( 1 ) (TBA=tetrabutylammonium), Na3[FeMo6O18{(OCH2)3CCH2OH}2]×11 H2O ( 2 ), [TMA]2[GaMo6O18(OH)3{(OCH2)3CNH3}]×7 H2O ( 3 ) (TMA=tetramethylammonium), and Na[TMA]2[FeMo6O18(OH)3{(OCH2)3CNH3}](OH)×6 H2O ( 4 ). All the compounds were characterized based on single‐crystal X‐ray diffraction (SXRD), FTIR, UV/Vis, thermogravimetric, ESI‐MS, NMR, and elemental analyses. Compound 1 was also crystallized with two smaller organic cations, giving [TMA]3[GaMo6O18(OH)3{(OCH2)3CCH2OH}]×n H2O ( 5 ) and [GDM]3[GaMo6O18(OH)3{(OCH2)3CCH2OH}]×n H2O ( 6 ) (GDM=guanidinium) and were characterized based on UV/Vis, NMR, FTIR, and elemental analyses. The use of these compounds as additives in macromolecular crystallography was investigated by examining their hydrolytic stability by using ESI‐MS in a pH range of 4 to 9. Sodium dodecyl sulfate‐polyacrylamide gel electrophoresis (SDS‐PAGE) analysis showed that BSA remains intact in a solution containing up to 100 equivalents of 1 or 4 over more than four days at 20 °C. Zeta potential measurements demonstrate that 1 – 4 induce charge inversions on the positively charged surface of BSA (1 mg mL?1) with concentrations starting as low as 1.29 mM for compounds 1 and 2 , which have the highest negative surface charge.  相似文献   

9.
10.
Four hybrid polyoxometalate–porphyrin copolymer films were obtained by the electrooxidation of zinc octaethylporphyrin in the presence of four different Dawson‐type polyoxometalates bearing two pyridyl groups (POM(py)2) with various spacers. The POM monomers were designed around 1,3,5‐trisubstituted benzene rings. Two of the substituents of the benzene ring are linked to the pyridyl groups, and the third is connected to the POM subunit. The four monomers vary in the relative positions of the nitrogen atoms of the pyridine rings or in the distance from the carbonyl group. The monomers were fully characterized by 1H, 31P, and 13C NMR spectroscopy, electrospray mass spectrometry, IR and UV/Vis spectroscopy, and electrochemistry. The copolymers were characterized by UV/Vis spectroscopy, X‐ray photoelectron spectroscopy, electrochemistry, and AFM. Their photovoltaic performance under visible light irradiation was investigated by photocurrent transient measurements under visible illumination.  相似文献   

11.
12.
Morphology evolution of sulfonic acid functionalized organosilica nanohybrids (Si(Et)Si‐Pr/ArSO3H) with a 1D tubular structure (inner diameter of ca. 5 nm), a 2D hexagonal mesostructure (pore diameter of ca. 5 nm), and a 3D hollow spherical structure (shell thickness of 2–3 nm and inner diameter of ca. 15 nm) was successfully realized through P123‐templated sol–gel cocondensation strategies and fine‐tuning of the acidity followed by aging or a hydrothermal treatment. The Si(Et)Si‐Pr/ArSO3H nanohybrids were applied in synthesis of alkyl levulinates from the esterification of levulinic acid and ethanolysis of furfural alcohol. Hollow spherical Si(Et)Si‐Pr/ArSO3H and hexagonal mesoporous analogues exhibited the highest and lowest catalytic activity, respectively, among three types of nanohybrids; additionally, the activity was influenced by the ?SO3H loading. The activity differences are explained in terms of different Brønsted acid and textural properties, reactant/product diffusion, and mass transfer rate, as well as accessibility of ?SO3H sites to the reactant molecules. The reusability of the nanohybrids was also evaluated.  相似文献   

13.
The synthesis of new functionalized organotin‐chalcogenide complexes was achieved by systematic optimization of the reaction conditions. The structures of compounds [(R1, 2Sn)3S4Cl] ( 1 , 2 ), [((R2Sn)2SnS4)2(μ‐S)2] ( 3 ), [(R1, 2Sn)3Se4][SnCl3] ( 4, 5 ), and [Li(thf)n][(R3Sn)(HR3Sn)2Se4Cl] ( 6 ), in which R1=CMe2CH2C(O)Me, R2=CMe2CH2C(NNH2)Me, and R3=CH2CH2COO, are based on defect heterocubane scaffolds, as shown by X‐ray diffraction, 119Sn NMR spectroscopy, and ESI mass spectrometry analyses. Compounds 4 , 5 , and 6 constitute the first examples of defect heterocubane‐type metal‐chalcogenide complexes that are comprised of selenide ligands. Comprehensive DFT calculations prompted us to search for the formal intermediates [(R1SnCl2)2(μ‐S)] ( 7 ) and [(R1SnCl)2(μ‐S)2] ( 8 ), which were isolated and helped to understand the stepwise formation of compounds 1 – 6 .  相似文献   

14.
Homosubstituted amido‐functionalized polyoctahedral oligomeric silsesquioxanes (POSS) have been synthesized by using acyl chlorides in high yields (ca. 95 %). The method proved to be superior over “conventional” syntheses applying carboxylic acids or acid anhydrides, which are much less efficient (ca. 60 % yield). A palette of aryl and alkyl groups has been used as side‐chains. The structures of the resulting amide‐POSS are supported by multinuclear 1H, 13C, 29Si NMR and FTIR spectroscopy and their full conversion into octasubstituted derivatives was confirmed using mass spectrometry. We also demonstrate that the functionalized silsesquioxanes with bulky organic side‐chains attached to cubic siloxane core form spherical‐like, well‐separated nanoparticles with a size of approximately 5 nm.  相似文献   

15.
16.
A 3D organic–inorganic hybrid compound, (2‐MepyH)3 [{Fe(1,10‐phen)3}3][{Pr4Sb12O18(OH) Cl11.5}(TDC)4.5({Pr4Sb12O18(OH)Cl9.5} Cl)] ? 3 (2‐Mepy) ? 28 H2O ( 1 ; 2‐Mepy=2‐methylpyridine, 1,10‐phen=1,10‐phenanthroline, H2TDC=thiophene‐2,5‐dicarboxylic acid), was hydrothermally synthesized and structurally characterized. Unusually, two kinds of high‐nuclearity clusters, namely [(Pr4Sb12O18 (OH)Cl11)(COO)5]5? and [(Pr4Sb12O18 (OH)Cl9)Cl(COO)5]4?, coexist in the structure of compound 1 ; two of the latter clusters are doubly bridged by two μ2‐Cl? moieties to form a new centrosymmetric dimeric cluster. An unprecedented spontaneous and reversible single‐crystal‐to‐single‐crystal transformation was observed, which simultaneously involved a notable organic‐ligand movement between the metal ions and an alteration of the bridging ion in the dimeric cluster, induced by guest‐release/re‐adsorption, thereby giving rise to the interconversion between compound 1 and the compound (2‐MepyH)3[{Fe(1,10‐phen)3}3][{Pr4Sb12O18(OH)Cl11.5}(TDC)4({Pr4Sb12O18Cl10.5(TDC)0.5(H2O)1.5}O0.5)] ? 25 H2O ( 1′ ). The mechanism of this transformation has also been discussed in great detail. Photocatalytic H2‐evolution activity was observed for compound 1′ under UV light with Pt as a co‐catalyst and MeOH as a sacrificial electron donor.  相似文献   

17.
The pH‐induced self‐assembly of three synthetic tripeptides in water medium is used to immobilize luminescent CdS nanoparticles. These peptides form a nanofibrillar network structure upon gelation in aqueous medium at basic pH values (pH 11.0–13.0), and the fabrication of CdS nanoparticles on the gel nanofiber confers the luminescent property to these gels. Atomic force microscopy, field‐emission scanning electron microscopy, and high‐resolution transmission electron microscopy clearly reveal the presence of CdS nanoparticles in a well‐defined array on the gel nanofibers. This is a convenient way to make organic nanofiber–inorganic nanoparticle hybrid nanocomposite systems. The size of the CdS nanoparticles remains almost same before and after deposition on the gel nanofiber. Photoluminescence (PL) measurement of the CdS nanoparticles upon deposition on the gel nanofibers shows a significant blue shift in the emission spectrum of the nanoparticles, and there is a considerable change in the PL gap energy of the CdS nanoparticles after immobilization on different gel nanofibrils. This finding suggests that the optoelectronic properties of CdS nanoparticles can be tuned upon deposition on gel nanofibers without changing the size of the nanoparticles.  相似文献   

18.
19.
A novel chiral mesoporous organosilica with L ‐tartardiamide moieties integrated in the backbone has been synthesized for the first time by a mild synthetic approach with block copolymer P123 as a template. The materials have highly ordered 2D hexagonal mesostructure and uniform pore size in the range of 7.6 to 5.5 nm. NMR, IR, and TG analyses confirm that the tartardiamide group was successfully incorporated into the framework. The intrinsic chirality of L ‐tartardiamide endows the materials with unique optical activities and chiral‐recognition properties. By dissolving the materials into NaOH, the solutions show rotation of polarized light by +8.42° to +15.53°, depending on the amount of the chiral moieties in the materials. Owing to the chirality of L ‐tartardiamide, the materials exhibited chiral‐induction ability in the epoxidation of allyl alcohol, thus further demonstrating the chirality of the materials.  相似文献   

20.
Metal–organic frameworks (MOFs) and MOF‐derived nanomaterials have recently attracted great interest as highly efficient, non‐noble‐metal catalysts. In particular, two‐dimensional MOF nanosheet materials possess the advantages of both 2D layered nanomaterials and MOFs and are considered to be promising nanomaterials. Herein, we report a facile and scalable in situ hydrothermal synthesis of Co–hypoxanthine (HPA) MOF nanosheets, which were then directly carbonized to prepare uniform Co@N‐Carbon nanosheets for efficient bifunctional electrocatalytic hydrogen‐evolution reactions (HERs) and oxygen‐evolution reactions (OERs). The Co embedded in N‐doped carbon shows excellent and stable catalytic performance for bifunctional electrocatalytic OERs and HERs. For OERs, the overpotential of Co@N‐Carbon at 10 mA cm?2 was 400 mV (vs. reversible hydrogen electrode, RHE). The current density of Co@N‐Carbon reached 100 mA cm?2 at an overpotential of 560 mV, which showed much better performance than RuO2; the largest current density of RuO2 that could be reached was only 44 mA cm?2. The Tafel slope of Co@N‐Carbon was 61 mV dec?1, which is comparable to that of commercial RuO2 (58 mV dec?1). The excellent electrocatalytic properties can be attributed to the nanosheet structure and well‐dispersed carbon‐encapsulated Co, CoN nanoparticles, and N‐dopant sites, which provided high conductivity and a large number of accessible active sites. The results highlight the great potential of utilizing MOF nanosheet materials as promising templates for the preparation of 2D Co@N‐Carbon materials for electrocatalysis and will pave the way to the development of more efficient 2D nanomaterials for various catalytic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号