首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the past decade, organocatalysis has emerged as a powerful tool for stereoselective carbon-carbon bond formation under exceptionally mild conditions. The organocatalytic versions of a large number of traditional synthetic transformations are now well established and the quest for new applications of the basic concepts of organocatalysis continues. This review addresses the emergent interest in the organocatalytic vinylogous aldol reaction. While noteworthy progress has been made in this area, significant challenges lie ahead.  相似文献   

2.
Oxazolones or azlactones are among the most‐common starting materials for the synthesis of quaternary amino acids. Since the seminal works of Steglich and co‐workers until the recent examples from Ooi and co‐workers, azlactones have been the focus of intense research. Oxazolones are also widely used in organometallic chemistry; however, with the “renaissance” of organocatalysis, this reagent has emerged as an important starting material for a broad range of new organocatalytic asymmetric methodologies. In this Focus Review, we aim to cover all of these new organocatalytic methodologies. We begin by discussing the dynamic kinetic resolution reactions developed with azlactones. Then, we disclose the organocatalytic rearrangements. Finally, we focus on the use of oxazolones as nucleophiles in organocatalytic processes.  相似文献   

3.
Asymmetric organocatalysis is now recognized as the third pillar of asymmetric synthesis. Recent years have witnessed increasing interest towards the use of highly active and stereoselective organocatalysts. This critical review documents the advances in the development of chiral organocatalysts which are systematically used in ≤3 mol% loading in all the sub-areas of the field, namely aminocatalysis, Br?nsted acids and bases, Lewis acids and bases, hydrogen bond-mediated catalysis, phase transfer and N-heterocyclic carbene catalyses (194 references).  相似文献   

4.
"Designer acids": combined acid catalysis for asymmetric synthesis   总被引:1,自引:0,他引:1  
Lewis and Brønsted acids can be utilized as more‐effective tools for chemical reactions by sophisticated engineering (“designer acids”). The ultimate goal of such “designer acids” is to form a combination of acids with higher reactivity, selectivity, and versatility than the individual acid catalysts. One possible way to take advantage of such abilities may be to apply a “combined acids system” to the catalyst design. The concept of combined acids, which can be classified into Brønsted acid assisted Lewis acid (BLA), Lewis acid assisted Lewis acid (LLA), Lewis acid assisted Brønsted acid (LBA), and Brønsted acid assisted Brønsted acid (BBA), can be a particularly useful tool for the design of asymmetric catalysis, because combining such acids will bring out their inherent reactivity by associative interaction, and also provide more‐organized structures that allow an effective asymmetric environment.  相似文献   

5.
Asymmetric organocatalysis has been successfully incorporated in many multistep one-pot sequences to provide simple access to structurally complex target molecules in a highly stereoselective fashion. The key feature behind this success is the ability of organocatalyzed reactions to proceed efficiently in the presence of large amounts of spectator reagents. Additionally, owing to their organic nature and substoichiometric presence, organocatalysts are also expected to become innocent bystanders in subsequent transformations. In this Minireview, an easy-to-use classification and nomenclatural system that is capable of systematically and informatively describing each one-pot reaction is introduced, and selected important contributions within the field of organocatalytic one-pot reactions are reviewed according to this new system. Finally, future developments and perspectives in the field are discussed.  相似文献   

6.
There has been growing interest in performing organocatalysis within a supramolecular system as a means of controlling reaction reactivity and stereoselectivity. Here, a protein is used as a host for iminium catalysis. A pyrrolidine moiety is covalently linked to biotin and introduced to the protein host streptavidin for organocatalytic activity. Whereas in traditional systems stereoselectivity is largely controlled by the substituents added to the organocatalyst, enantiomeric enrichment by the reported supramolecular system is completely controlled by the host. Also, the yield of the model reaction increases over 10‐fold when streptavidin is included. A 1.1 Å crystal structure of the protein–catalyst complex and molecular simulations of a key intermediate reveal the chiral scaffold surrounding the organocatalytic reaction site. This work illustrates that proteins can be an excellent supramolecular host for driving stereoselective secondary amine organocatalysis.  相似文献   

7.
Over the last ten years, the combination of organocatalysis with transition metal (TM) catalysis has become one of the most important toolboxes used for synthesizing optically pure compounds containing chiral quaternary centers, including spiro heterocyclic molecules. The dominant method in the enantioselective synthesis of spiro heterocyclic compounds based on synergistic catalysis includes chiral aminocatalysis and NHC catalysis, as already established covalent organocatalytic strategies. Another area of organocatalysis widely combined with TM catalysis producing enantiomerically enriched spiro heterocyclic compounds is non-covalent catalysis, dominated by chiral phosphoric acids, thiourea, and squaramide derivatives. This review article aims to summarize enantioselective methods used for constructing spirocyclic heterocycles based on a combination of organocatalysis and transition metal catalysis.  相似文献   

8.
Recent years have witnessed increasing interest in the field of asymmetric organocatalysis. In particular, efforts in this field have been devoted to the use of small organic molecules in asymmetric processes based on enantiotopic face discrimination and, only recently, efforts have also been devoted to asymmetric organocatalytic desymmetrization of prochiral substrates-a process based on enantiotopic group discrimination. This critical review documents the advances in the use of organocatalysis for the enantioselective desymmetrization of achiral and meso anhydrides and its application to the synthesis of valuable compounds as reported until 2010 (134 references).  相似文献   

9.
What do quantum cellular automata (QCA), “on water” reactions, and SN1‐type organocatalytic transformations have in common? The link between these distant arguments is the practical access to useful intermediates and key products through the use of stabilized carbenium ions. Over 10 years, starting with a carbenium ion bearing a ferrocenyl group, to the 1,3‐benzodithiolylium carbenium ion, our group has exploited the use of these intermediates in useful and practical synthetic transformations. In particular, we have applied the use of carbenium ions to stereoselective organocatalytic alkylation reactions, showing a possible solution for the “holy grail of organocatalysis”. Examples of the use of these quite stabilized intermediates are now also considered in organometallic chemistry. On the other hand, the stable carbenium ions are also applied to tailored molecules adapted to quantum cellular automata, a new possible paradigm for computation. Carbenium ions are not a problem, they can be a/the solution!

  相似文献   


10.
The design and development of new high-performance catalysts for applications in asymmetric catalytic reactions is of ongoing interest in organic chemistry. The combination of a Lewis acid and a Lewis base working in concert is now considered state of the art in stereoselective syntheses. The synergistic activation by two or more reactive centers allows high reaction rates and excellent transfer of stereochemical information. Despite the self-quenching reaction between Lewis acids and Lewis bases that might lead to an inactive catalyst, considerable effort has been directed towards the development of the dual-activation concept. The ultimate goal is to mimic nature by the discovery of catalytic systems analogous to enzymatic processes that involve metal-ion cocatalysts. With this aim, the dual activation concept greatly broadens the range of artificial catalysts. The most efficient catalytic systems are reviewed, and the mechanisms of action are discussed.  相似文献   

11.
不对称Biginelli反应的研究进展   总被引:1,自引:0,他引:1  
综述了金属配合物、有机小分子(手性磷酸、手性硫脲)、金属Lewis酸与有机小分子共催化及纳米材料催化不对称Biginelli反应的研究进展。详述了反应机理,分析了催化剂、底物及反应条件对产物收率和对映选择性的影响。参考文献52篇。  相似文献   

12.
《Tetrahedron letters》1986,27(8):883-886
The stereoselectivity of iododesilylation of terminal E-vinylsilanes varies with changing amount of Lewis acid. The use of this “tunable” stereoselective reaction was demonstrated by the syntheses of two insect sex pheromones with defined E/Z isomeric ratios.  相似文献   

13.
After an initial period of validating asymmetric organocatalysis by using a wide range of important model reactions that constitute the essential tools of organic synthesis, the time has now been reached when organocatalysis can be used to address specific issues and solve pending problems of stereochemical relevance. This Review deals with selected studies reported in 2006 and the first half of 2007, and is intended to highlight four main aspects that may be taken as testimony of the present status and prospective of organocatalysis: a) chemical efficiency; b) discovery of new substrate combinations to give new asymmetric syntheses; c) development of new catalysts for specific purposes by using mechanistic findings; and d) applications of organocatalytic reactions in the asymmetric total synthesis of target natural products and known compounds of biological and pharmaceutical relevance.  相似文献   

14.
Chiral epoxides serve as versatile building blocks in the synthesis of complex organic frameworks. The high strain imposed by the three‐membered ring system makes epoxides prone to a variety of nucleophilic ring‐opening reactions. Since the development of the Sharpless epoxidation, there have been many important contributions and advances in this area. With the rapid development of the field of asymmetric organocatalysis, a wide range of organocatalysts is now able to catalyze the epoxidation of broad class of unsaturated carbonyl compounds. In this Minireview, recent progress in the development of organocatalytic asymmetric epoxidation methods, the proposed mechanisms of these reactions and their applications as intermediates is reported.  相似文献   

15.
The great progress that took place in the field of higher-order cycloadditions involving fulvene- and tropone-derived systems in the last few years is astonishing. By application of organocatalytic activation modes, new higher-order reactivities have been identified and described in the literature. These approaches take advantage of the high reliability of organocatalysis, at the same time expanding its potential and paving new directions for its further evolution. In this Minireview, the progress in the field of organocatalytic higher-order cycloadditions involving fulvene- and tropone-derived systems is summarized and insights into mechanistic aspects of the developed reactivities are provided. Furthermore, the discussion on the nomenclatural issues related to cycloaddition reactions has been conducted and solutions to clarify the picture proposed.  相似文献   

16.
Modern organocatalysis has rapidly evolved into an essential component of contemporary organic synthesis. One of the most distinctive aspects of organocatalytic processes is the biomimetic nature in which the catalyst engages the substrate, often forming covalently bound intermediates in a manner reminiscent of enzyme catalysis. Indeed, the process of intramolecularization is often accompanied by a conformational change of the catalyst scaffold, further accentuating this analogy with biological systems. The isolation and study of these catalytic intermediates facilitate the rapid generation of conformation and reactivity profiles to assist in organocatalytic reaction development and/or clarify reaction outcomes. Emulating the formative advances that have derived from studying reaction intermediates in mechanistic organometallic and enzymatic catalysis, the deconstruction of covalently bound organocatalysis intermediates is gaining momentum as a design strategy.  相似文献   

17.
Despite the recent spectacular advances in asymmetric organocatalysis, proline and its analogues have been predominantly employed as organocatalysts in reactions utilizing enamine intermediates. Recent studies of enantioselective organocatalytic reactions promoted by primary amino acids and their derivatives are described in this account. The primary amino functions, rather than the secondary pyrrolidine moiety, have been shown to provide unique reactivity and stereoselectivity in asymmetric aldol and Mannich reactions.  相似文献   

18.
The term “N-Heterocyclic carbene organocatalysis” is often invoked in organic synthesis for reactions that are catalyzed by different azolium salts in the presence of bases. Although the mechanism of these reactions is considered today evident, a closer look into the details that have been collected throughout the last century reveals that there are many open questions and even contradictions in the field. Emerging new theoretical and experimental results offer solutions to these problems, because they show that through considering alternative reaction mechanisms a more consistent picture on the catalytic process can be obtained. These novel perspectives will be able to extend the scope of the reactions that we call today N-heterocyclic carbene organocatalysis.  相似文献   

19.
An approach to asymmetric catalysis based on chiral molecular recognition by the combination of chiral Lewis acids and chiral organocatalysis for the formation of optically active quarternary centers in the aza-Henry reaction is presented; this procedure leads to products with up to 98% ee and a diastereomeric ratio of 14 : 1 in excellent yields with catalyst loadings of 5 mol%.  相似文献   

20.
In an endeavor to provide an efficient route to natural product hybrids, described herein is an efficient, highly stereoselective, one‐pot process comprising an organocatalytic conjugate addition of 1,3‐dicarbonyls to α,β‐unsaturated aldehydes followed by an intramolecular isocyanide‐based multicomponent reaction. This approach enables the rapid assembly of complex natural product hybrids including up to four different molecular fragments, such as hydroquinolinone, chromene, piperidine, peptide, lipid, and glycoside moieties. The strategy combines the stereocontrol of organocatalysis with the diversity‐generating character of multicomponent reactions, thus leading to structurally unique peptidomimetics integrating heterocyclic, lipidic, and sugar moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号