首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report a detailed mechanistic study on the CH functionalization of alkanes by palladium complexes with chelating bis(N‐heterocyclic carbene) (NHC) complexes. The experimental results are complemented by detailed DFT calculations, which allow us to rationalize the regioselectivity and the catalytic activity. The study includes a library of catalysts with different electronic and steric properties, kinetic data, and isotope effects. The combined experimental and computational results favor a mechanism involving organometallic palladium(IV) intermediates. Furthermore, it is shown that at high halide loadings a different mechanism is operative.  相似文献   

2.
The hydrothiolation of unsaturated carbon–carbon bonds is a practical and atom‐economical approach for the incorporation of sulfur into organic frameworks. In recent years, we have witnessed the development of a range of transition‐metal‐based catalytic systems for the control of the regio‐ and stereoselectivity. In this Minireview we highlight the mechanistic background behind this transformation so as to help the design of more specific and active organometallic hydrothiolation catalysts.  相似文献   

3.
Recent advances in computational design have enabled the development of primitive enzymes for a range of mechanistically distinct reactions. Here we show that the rudimentary active sites of these catalysts can give rise to useful chemical promiscuity. Specifically, RA95.5‐8, designed and evolved as a retro‐aldolase, also promotes asymmetric Michael additions of carbanions to unsaturated ketones with high rates and selectivities. The reactions proceed by amine catalysis, as indicated by mutagenesis and X‐ray data. The inherent flexibility and tunability of this catalyst should make it a versatile platform for further optimization and/or mechanistic diversification by directed evolution.  相似文献   

4.
Boron‐containing materials have recently been identified as highly selective catalysts for the oxidative dehydrogenation (ODH) of alkanes to olefins. It has previously been demonstrated by several spectroscopic characterization techniques that the surface of these boron‐containing ODH catalysts oxidize and hydrolyze under reaction conditions, forming an amorphous B2(OH)xO(3?x/2) (x=0–6) layer. Yet, the precise nature of the active site(s) remains elusive. In this Communication, we provide a detailed characterization of zeolite MCM‐22 isomorphously substituted with boron (B‐MWW). Using 11B solid‐state NMR spectroscopy, we show that the majority of boron species in B‐MWW exist as isolated BO3 units, fully incorporated into the zeolite framework. However, this material shows no catalytic activity for ODH of propane to propene. The catalytic inactivity of B‐MWW for ODH of propane falsifies the hypothesis that site‐isolated BO3 units are the active site in boron‐based catalysts. This observation is at odds with other traditionally studied catalysts like vanadium‐based catalysts and provides an important piece of the mechanistic puzzle.  相似文献   

5.
Some novel pyrazoline‐based organometallic compounds were synthesized as new leads in antimicrobial chemotherapy. The structures of compounds were elucidated by different spectroscopic techniques and elemental analyses. All compounds were investigated for in vitro antimicrobial studies against fifteen ATTC bacterial and fungal strains. The microbial susceptibility of these compounds revealed that all the tested compounds gave good minimum inhibitory concentration (MIC) values against the tested organisms that are either similar or even better than the reference drugs amoxicillin and fluconazole, which gave MIC values 8‐64 μg/ml against bacterial and 64 μg/ml against fungal strains, respectively. Among all compounds, compound ( 4d ) 1‐(5‐(4‐chlorophenyl)‐3‐ferrocenyl‐4,5‐dihydropyrazol‐1‐yl)‐2‐quinolin‐8‐yloxy) ethanone, emerged out the most promising antimicrobial organometallic derivative with MIC values against all the strains ranging from 8‐32 μg/ml. Other compounds gave a range of MIC values between 16‐64 μg/ml against S. bovis, 16‐32 μg/ml against E. coli, and C. tropicalis except compound ( 4d) which gave MIC 8 μg/ml against S. bovis and E. coli, whereas 32 μg/ml against C. tropicalis. Collectively, these compounds gave a lower MIC value between 32‐64 μg/ml against both of the biofilm forming strains namely, P. aeruginosa and S. mutans. The results of microbial susceptibility concluded that these novel organometallic compounds are new leads in antimicrobial chemotherapy and can be very useful for further optimization work on microbial chemotherapy.  相似文献   

6.
High–throughput‐screening (HTS) tools and methods are used more and more, especially in industry, in the search for new, selective organometallic catalysts. In most cases, the approach is, in essence, empirical, and the strategy is to increase the number of experiments that can be run at a given place in a given time. Highly miniaturized, parallel reaction setups have been implemented for the rapid assessment of whether novel catalysts resulting from the structural amplification of a basic framework are “good” or “bad” with respect to the properties of interest, and, depending on the response, worthy of a subsequent, more‐careful evaluation. In this article, we demonstrate that it is possible to utilize these state‐of‐the‐art HTS platforms with a different strategy: the rapid generation of reliable kinetic data for mechanistic studies in view of a thorough understanding and rational catalyst design. Ziegler–Natta‐type catalytic olefin polymerization will be used throughout as an example.

  相似文献   


7.
Although nanoparticles are widely used as catalysts, little is known about their potential ability to trigger privileged transformations as compared to homogeneous molecular or bulk heterogeneous catalysts. We herein demonstrate (and rationalize) that nanoparticles display orthogonal reactivity to molecular catalysts in the cross‐coupling of aryl halides with aryl germanes. While the aryl germanes are unreactive in LnPd0/LnPdII catalysis and allow selective functionalization of established coupling partners in their presence, they display superior reactivity under Pd nanoparticle conditions, outcompeting established coupling partners (such as ArBPin and ArBMIDA) and allowing air‐tolerant, base‐free, and orthogonal access to valuable and challenging biaryl motifs. As opposed to the notoriously unstable polyfluoroaryl‐ and 2‐pyridylboronic acids, the corresponding germanes are highly stable and readily coupled. Our mechanistic and computational studies provide unambiguous support of nanoparticle catalysis and suggest that owing to the electron richness of aryl germanes, they preferentially react by electrophilic aromatic substitution, and in turn are preferentially activated by the more electrophilic nanoparticles.  相似文献   

8.
In the last decade, manganese(II) complexes with N‐donor tetradentate aminopyridine ligands emerged as efficient catalysts of enantioselective epoxidation of olefins and direct selective oxidation of C−H groups in complex organic molecules, with environmentally benign oxidant hydrogen peroxide. In this personal account, we summarize the progress of these catalysts with regard to ligands design, structure‐reactivity correlations, evaluation of the substrate scope, as well as mechanistic studies, shedding light on the nature of active sites and the mechanisms of selective oxygenations. Several practically promising catalytic syntheses with the aid of Mn aminopyridine catalysts are exemplified.  相似文献   

9.
Gibberellins (GAs) are phytohormones essential for many developmental processes in plants. In this work, fundamental mechanism of hormone perception by receptor GID1 has been studied by performing computational simulations, revealing a new GA‐binding channel of GID1 and a novel hormone perception mechanism involving only one conformational state of GID1. The novel hormone perception mechanism demonstrated here is remarkably different from the previously proposed/speculated mechanism [Murase et al., Nature 2008 , 456, 459] involving two conformational states (“OPEN” and “CLOSED”) of GID1. According to the new perception mechanism, GA acts as a “conformational stabilizer,” rather than the previously speculated “allosteric inducer,” to induce the recognition of protein DELLA by GID1. The novel mechanistic insights obtained in this study provide a new starting point for further studies on the detailed molecular mechanisms of GID1 interacting with DELLA and various hormones and for mechanism‐based rational design of novel, potent growth regulators that target crops and ornamental plants. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Enantioselective addition of boronic acids to N‐unsubstituted isatin‐derived ketimines was realized using rhodium(I)/chiral diene catalysts. The reactions can be performed in the presence of catalytic amounts of a base to give adducts in high yield with high enantioselectivity. Preliminary mechanistic information including a computational model to explain the observed enantioselectivity is also provided.  相似文献   

11.
We report halogenated pentanidiums as phase‐transfer catalysts for the asymmetric alkylation of sulfenate anions to various sulfoxides with high enantioselectivities (up to 99 % ee) and yields (up to 99 %). This approach gives access to enantioenriched heterocyclic sulfoxides that might not be compatible with strong oxidants or organometallic reagents. Computational studies have revealed that the multiple noncovalent interactions such as halogen bonds and nonclassical hydrogen bonds are involved.  相似文献   

12.
S ‐Adenosylmethionine (SAM) is one of the most common co‐substrates in enzyme‐catalyzed methylation reactions. Most SAM‐dependent reactions proceed through an SN2 mechanism, whereas a subset of them involves radical intermediates for methylating non‐nucleophilic substrates. Herein, we report the characterization and mechanistic investigation of NosN, a class C radical SAM methyltransferase involved in the biosynthesis of the thiopeptide antibiotic nosiheptide. We show that, in contrast to all known SAM‐dependent methyltransferases, NosN does not produce S ‐adenosylhomocysteine (SAH) as a co‐product. Instead, NosN converts SAM into 5′‐methylthioadenosine as a direct methyl donor, employing a radical‐based mechanism for methylation and releasing 5′‐thioadenosine as a co‐product. A series of biochemical and computational studies allowed us to propose a comprehensive mechanism for NosN catalysis, which represents a new paradigm for enzyme‐catalyzed methylation reactions.  相似文献   

13.
The association and dissociation of ligands plays a vital role in determining the reactivity of organometallic catalysts. Computational studies with density functional theory often fail to reproduce experimental metal-ligand bond energies, but recently functionals which better capture dispersion effects have been developed. Here we explore their application and discuss future challenges for computational studies of organometallic catalysis.  相似文献   

14.
Simple reactions of the most used functional groups allowing two molecular fragments to link under mild, sustainable conditions are among the crucial tools of molecular chemistry with multiple applications in materials science, nanomedicine, and organic synthesis as already exemplified by peptide synthesis and “click” chemistry. We are concerned with redox organometallic compounds that can potentially be used as biosensors and redox catalysts and report an uncatalyzed reaction between primary and secondary amines with organometallic electrophilic alkynes that is free of side products and fully “green”. A strategy is first proposed to synthesize alkynyl organometallic precursors upon addition of electrophilic aromatic ligands of cationic complexes followed by endo hydride abstraction. Electrophilic alkynylated cyclopentadienyl or arene ligands of Fe, Ru, and Co complexes subsequently react with amines to yield trans‐enamines that are conjugated with the organometallic group. The difference in reactivities of the various complexes is rationalized from the two‐step reaction mechanism that was elucidated through DFT calculations. Applications are illustrated by the facile reaction of ethynylcobalticenium hexafluorophosphate with aminated silica nanoparticles. Spectroscopic, nonlinear‐optical and electrochemical data, as well as DFT and TDDFT calculations, indicate a strong push–pull conjugation in these cobalticenium– and Fe– and Ru–arene–enamine complexes due to planarity or near‐planarity between the organometallic and trans‐enamine groups involving fulvalene iminium and cyclohexadienylidene iminium mesomeric forms.  相似文献   

15.
Two methods are reported for the 1,2‐ and 1,1‐arylboration of α‐methyl vinyl arenes. In the case of 1,2‐arylboration, the formation of a quaternary center occurred through a rare cross‐coupling reaction of a tertiary organometallic complex. 1,1‐Arylboration was enabled by catalyst optimization and occurred through a β‐hydride elimination/reinsertion cascade. Enantioselective variants of both processes are presented as well as mechanistic investigations.  相似文献   

16.
Transition-metal-catalyzed cross-coupling reactions are central to many organic synthesis methodologies. Traditionally, Pd, Ni, Cu, and Fe catalysts are used to promote these reactions. Recently, many studies have showed that both homogeneous and heterogeneous Au catalysts can be used for activating selective cross-coupling reactions. Here, an overview of the past studies, current trends, and future directions in the field of gold-catalyzed coupling reactions is presented. Design strategies to accomplish selective homocoupling and cross-coupling reactions under both homogeneous and heterogeneous conditions, computational and experimental mechanistic studies, and their applications in diverse fields are critically reviewed. Specific topics covered are: oxidant-assisted and oxidant-free reactions; strain-assisted reactions; dual Au and photoredox catalysis; bimetallic synergistic reactions; mechanisms of reductive elimination processes; enzyme-mimicking Au chemistry; cluster and surface reactions; and plasmonic catalysis. In the relevant sections, theoretical and computational studies of AuI/AuIII chemistry are discussed and the predictions from the calculations are compared with the experimental observations to derive useful design strategies.  相似文献   

17.
Electrospray ionization mass spectrometry (ESI‐MS) is a useful technique for solving organometallic and coordination chemistry characterization problems that are difficult to address using traditional methods. However, assigning the ESI mass spectra of such compounds can be challenging, and the considerations involved in doing so are quite different from assigning the mass spectra of purely organic samples. This is a tutorial article for organometallic/coordination chemists using ESI‐MS to analyze pure compounds or reaction mixtures. The fundamentals of assigning ESI mass spectra are discussed within the context of organometallic and coordination systems. The types of ions commonly observed by ESI‐MS are categorized and described. Finally, a step‐by‐step guide for the assignment of organometallic and coordination chemistry ESI mass spectra is provided along with two case studies.  相似文献   

18.
有机金属烯烃配位聚合催化剂   总被引:2,自引:0,他引:2       下载免费PDF全文
有机金属烯烃配位聚合催化剂具有高催化活性和良好的分子剪裁性,通过调节催化剂的微结构,如配体的取代基?配位原子以及配位中心的电子与立体环境等,可以在分子层次上实现烯烃聚合物的分子设计与组装;实现聚合物物理性质的调控,从而得到各种具有新型功能和立体异构的聚合物。本文综述了金属烯烃聚合催化剂研究进展,并展望该领域的发展趋势。  相似文献   

19.
Since the first reports in the late 1970s on transition metal complexes containing pincer‐type ligands—named after the particular coordination mode of these ligands—these systems have attracted increasing interest owing to the unusual properties of the metal centers imparted by the pincer ligand. Typically, such a ligand comprises an anionic aryl ring which is ortho,ortho‐disubstituted with heteroatom substituents, for example, CH2NR2, CH2PR2 or CH2SR, which generally coordinate to the metal center, and therefore support the M−C σ bond. This commonly results in a terdentate and meridional coordination mode consisting of two metallacycles which share the M−C bond. Detailed studies of the formation and the properties of a large variety of pincers containing platinum group metal complexes have provided direct access to both a fundamental understanding of a variety of reactions in organometallic chemistry and to a range of new applications of these complexes. The discovery of alkane dehydrogenation catalysts, the mechanistic elucidation of fundamental transformations (for example, C−C bond activation), the construction of the first metallodendrimers for sustainable homogeneous catalysis, and the engineering of crystalline switches for materials processing represent only a few of the many highlights which have emanated from these numerous investigations. This review discusses the synthetic methodologies that are currently available for the preparation of platinum group metal complexes containing pincer ligands and especially emphasizes different applications that have been realized in materials science such as the development and engineering of sensors, switches, and catalysts.  相似文献   

20.
A series of Grubbs‐type catalysts that contain lipase‐inhibiting phosphoester functionalities have been synthesized and reacted with the lipase cutinase, which leads to artificial metalloenzymes for olefin metathesis. The resulting hybrids comprise the organometallic fragment that is covalently bound to the active amino acid residue of the enzyme host in an orthogonal orientation. Differences in reactivity as well as accessibility of the active site by the functionalized inhibitor became evident through variation of the anchoring motif and substituents on the Nheterocyclic carbene ligand. Such observations led to the design of a hybrid that is active in the ring‐closing metathesis and the cross‐metathesis of N,N‐diallyl‐p‐toluenesulfonamide and allylbenzene, respectively, the latter being the first example of its kind in the field of artificial metalloenzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号