首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《化学:亚洲杂志》2017,12(23):3027-3038
Reactions of the ruthenium complex [Ru]Cl ([Ru]=Cp(PPh3)2Ru; Cp=η5‐C5H5) with several aryl propargyl acetates, each with an ortho ‐substituted chain of various length containing an epoxide on the aromatic ring and with or without methyl substitutents on the epoxide ring, bring about novel cyclizations. The cyclization reactions of HC≡CCH(OAc)(C6H4)CH2(RC2H2O) (R=H, 6 a ; R=CH3, 6 b , where RC2H2O is an epoxide ring) in MeOH give the vinylidene complexes 5 a – b , respectively, each with the Cβ integrated into a tetrahydro‐5H ‐benzo[7]annulen‐6‐ol ring. A C−C bond formation takes place between the propargyl acetate and the less substituted carbon of the epoxide ring. Further cyclizations of 5 a – b induced by HBF4 give the corresponding vinylidene complexes 8 a – b each with a new 8‐oxabicyclo‐[3.2.1]octane ring by removal of a methanol molecule in high yield. For similar aryl propargyl acetates with a shorter epoxide chain, the cyclization gives a mixture of a vinylidene complex with a tetrahydronaphthalen‐1‐ol ring and a carbene complex with a tricyclic indeno‐furan ring. For the cyclization of 18 , with a longer epoxide chain, opening of the epoxide is required to afford the vicinal bromohydrin 22 , then tandem cyclization occurs in one pot. Products are characterized by spectroscopic methods as well as by XRD analysis.  相似文献   

2.
The sequential reaction of the amino(trimethylsilyl)carbene complex [(CO)5W=C(NH2)C≡CSiMe3] ( 1 ) with nBuLi and [I‐Fe(CO)2Cp] affords the C(carbene)‐N bridged heterobinuclear complex [(CO)5W=C{NHFe(CO)2Cp}C≡CSiMe3] ( 2 ). Desilylation of 1 is achieved by treatment with KF in THF/MeOH. From the reaction of the resulting complex [(CO)5W=C(NH2)C≡CH] ( 3 ) with nBuLi and [I‐Fe(CO)2Cp] two binuclear WFe compounds in a ratio of approximately 1:1 are obtained: the C(carbene)‐C≡C bridged complex 4 and the C(carbene)‐N bridged complex 5 . Repetition of the deprotonation/metallation sequence yields the trinuclear WFe2 complex 6 . One Fe(CO)2Cp fragment in 6 is bonded to the amino group and the other one to the terminal carbon atom of the ethynyl substituent. The analogous reaction of 3 with nBuLi and [Br‐Ni(PMe2Ph)2Mes] gives a ca. 1:1 mixture of two heterobinuclear complexes ( 7 and 8 ). Complex 7 is bridged by the C(carbene)‐C≡C and complex 8 by the C(carbene)‐N fragment. Subsequent reaction of 7 with BuLi and [Br‐Ni(PMe2Ph)2Mes] finally affords the trinuclear WNi2 complex 9 related to 6 . The solid‐state structure of 2 is established by an X‐ray diffraction analysis. The spectroscopic data of the bi‐ and trinuclear complexes indicate electronic communication between the metal centers through the bridging group.  相似文献   

3.
Imidazole‐based carbohydrazides, i.e., 3‐oxidoimidazole‐4‐carbohydrazides 1 and 2‐[(imidazol‐2‐yl)sulfanyl]acetohydrazides 6 , react with aryl isoselenocyanates 4 in MeOH at room temperature to give the corresponding selenosemicarbazides 5 and 7 , respectively, in good yields. On heating 7b in DMF in the presence of air to 100°, 1,3,4‐oxadiazole 8a was formed via cyclization and formal elimination of H2Se. Product 8a was also obtained after heating of a mixture of 4a and 6b under the same conditions. On the other hand, on heating of a solution of 7c in MeOH at reflux, a cyclization occurred to give the corresponding 1,2,4‐triazole‐3‐selone 9b . Again, the same product was formed when a mixture of 4b and 6b was heated in MeOH. Surprisingly, analogous cyclizations of selenosemicarbazides of type 5 under the same conditions failed, and only decomposition was observed. The structures of 7a, 7d , and 9b have been established by X‐ray crystallography.  相似文献   

4.
The 12‐membered‐ring metallacycles [mer‐Re{≡CCH=C(R)C≡C?}Cl(PMe2Ph)3)]2 (R=CMe3, 1‐adamantyl), which are organometallic analogues of antiaromatic octadehydro[12]annulene, are prepared by heating the methyl carbyne complexes mer‐Re{≡CCH=C(R)C≡CH}(CH3)Cl(PMe2Ph)3. An intermolecular σ‐bond metathesis between the Re?CH3 bond and the acetylenic C?H bond is proposed for their formation.  相似文献   

5.
The aryl propargylic alcohol 1‐[2‐(thiophen‐3‐yl)phenyl]prop‐2‐yn‐1‐ol ( 1a ) is readily prepared from 2‐(thiophen‐3‐yl)benzaldehyde. In the presence of visible light, treatment of 1a with one‐half mole equivalent of [Ru]Cl ([Ru]?Cp(dppe)Ru) (dppe=1,2‐bis(diphenylphosphino)ethane) and NH4PF6 in O2 affords the naphtha[2,1‐b]thiophene‐4‐carbaldehyde ( 4a ) in high yields. The cyclization reaction of 1a proceeds through the formation of the carbene complex 2a that contains the naphtha[2,1‐b]thiophene ring, which is isolated in a 1:1 stoichiometric reaction. The C? C bond formation between the inner carbon of the terminal triple bond and the heterocyclic ring is confirmed by structure determination of 2a using single‐crystal X‐ray diffraction analysis. Facile oxygenation of 2a by O2 yields the aldehyde product 4a accompanied by the formation of phosphine oxide of dppe. Oxygen is most likely activated by coordination to the ruthenium center when one PPh2 unit of the dppe ligand dissociates. This dissociated PPh2 unit then reacts with the coordinated oxygen nearby to generate half‐oxidized dppe ligand and an unobserved oxo–carbene intermediate. Coupling of the oxo/carbene ligands followed by demetalation then yields 4a . Presumably the resulting complex with the half‐oxidized dppe ligand continuously promotes cyclization/oxygenation of 1a to yield the second aldehyde molecule. In alcohol such as MeOH or EtOH, the oxygenation reaction affords a mixture of 4a and the corresponding esters 5a or 5a' . Four other aryl propargylic alcohols 1b , 1c , 1d , 1e , which contain thiophen‐2‐yl, isopropenyl, fur‐3‐yl, and fur‐2‐yl, respectively, on the aryl ring are also prepared. Analogous aldehydes 4b , 4c , 4d , 4e are similarly prepared from 1b , 1c , 1d , 1e , respectively. For oxygenations of 1b , 1d , and 1e in alcohol, mixtures of aldehyde 4 , ester 5 , and acetal 8 are obtained. The carbene complex 2b obtained from 1b was also characterized by single‐crystal X‐ray diffraction analysis. The UV/Vis spectra of 2a and 2b consist of absorption bands with a high extinction coefficient. From DFT calculations on 2a and 2b , the visible light is found to populate the LUMO antibonding orbital of mainly Ru?C bonds, thereby weakening the Ru?C bond and promoting the oxygenation/demetalation reactions of 2 .  相似文献   

6.
In this work the reactivity of 1‐metalla‐2,5‐diaza‐cyclopenta‐2,4‐dienes of group 4 metallocenes, especially of the pyridyl‐substituted examples, towards small molecules is investigated. The addition of H2, CO2, Ph?C≡N, 2‐py?C≡N, 1,3‐dicyanobenzene or 2,6‐dicyanopyridine results in exchange reactions, which are accompanied by the elimination of a nitrile. For CO2, a coordination to the five‐membered cycle occurs in case of Cp*2Zr(N=C(2‐py)?C(2‐py)=N). A 1,4‐diaza‐buta‐1,3‐diene complex is formed by H‐transfer in the conversion of the analogous titanocene compound with CH3?C≡N, PhCH2?C≡N or acetone. For CH3?C≡N a coupling product of three acetonitrile molecules is established additionally. In order to split off the metallocene from the coupled nitriles, we examined reactions with HCl, PhPCl2, PhPSCl2 and SOCl2. In the last case, the respective thiadiazole oxides and the metallocene dichlorides were obtained. A subsequent reaction produced thiadiazoles.  相似文献   

7.
The base-catalyzed intramolecular cyclization of polycyclic olefinic alcohols of type a (10-endo-hydroxy-anti9,10-tricyclo [4.2.1.12,5]dec-7-en-9-ones (type h ), anti9,10-tricyclo[4.2.1.12,5] dec-3-en-9-endo-ols (type j ), and anti10,11-tricyclo[4.3.1.12,5]undec-3-en-10-endo-ols (type 1 )) to the ethers d and f , resp., has been studied. A mechanism for the nucleophilic addition of the corresponding alkoxide anion b to the isolated C,C? double bond is discussed. It is proposed that b is formed (fast acid/base equilibrium) in the first step. For the subsequent reaction sequence, there are two well distinguishable pathways: (a) Compounds with an additional carbonyl group ( h ) cyclize via a homoenolate-like intermediate c , which is protonated stereoselectively on the exo-side by the hydroxylic solvent. (b) Compounds without a carbonyl group ( j and l ) cyclize 102-104 times slower, and the reaction proceeds via a carbanion-like transition state e . The proton transfer from the hydroxylic solvent is clearly coupled with the C,O? bond formation. Steric compression in the olefinic alcohols a influences the cyclization rate: (a) Alcohols with a smaller ring ( h , X = CH2CH2) cyclize 70–200 times faster than the ones with a larger ring ( 1 , X = CH2CH2CH2). (b) Replacement of the H-atom at the carbinol C-atom by a CH3 group enhances the rate of ether formation by a factor of 50–100. Due to through-bond interactions between the C,C-double bonds, olefinic alcohols with an additional endocyclic C,C-double bond ( h and j , X = CH?CH) cyclize 20–300 times faster than the corresponding monoolefinic ones ( h and j , X = CH2CH2).  相似文献   

8.
Sequential reaction of a multisite LH4 ligand {2‐[2‐hydroxy‐3‐(hydroxymethyl)‐5‐methylbenzylideneamino]‐2‐methylpropane‐1,3‐diol} with appropriate lanthanide salts followed by the addition of Ni(NO3)2 ? 6 H2O in a 4:1:2 stoichiometric ratio in the presence of triethylamine afforded four heterobimetallic trinuclear complexes [Ni2Gd(LH3)4] ? 3 NO3 ? 3 MeOH ? H2O ? CH3CN ( 1 ), [Ni2Tb(LH3)4] ? 3 NO3 ? 3 MeOH ? CH3CN ( 2 ), [Ni2Dy(LH3)4] ? 3 NO3 ? 3 MeOH ? H2O ? CH3CN ( 3 ), and [Ni2Ho(LH3)4] ? 3 NO3 ? 3 MeOH ? H2O ? CH3CN ( 4 ). Complexes 1 – 4 possess linear trimetallic cores with a central lanthanide ion. Magnetic studies revealed a predominant ferromagnetic interaction between the Ni and Ln centers. Alternating current susceptibility measurements of complex 3 showed a small frequency dependence of the out‐of‐phase signal, χ′′M , under zero direct current field, but without achieving a net maximum above 2 K. Magnetic studies on 1 revealed that it has a significant magnetocaloric effect.  相似文献   

9.
The reactions of alkyn‐1‐yl(vinyl)silanes R2Si[C?C‐Si(H)Me2]CH?CH2 [R = Me (1a), Ph (1b)], Me2Si[C?C‐Si(Br)Me2]CH?CH2 (2a), and of alkyn‐1‐yl(allyl)silanes R2Si[C?C‐Si(H)Me2]CH2CH?CH2 (R = Me (3a), R = Ph (3b)] with 9‐borabicyclo[3.3.1]nonane in a 1:1 ratio afford in high yield the 1‐silacyclopent‐2‐ene derivatives 4a, b and 5a, and the 1‐silacyclohex‐2‐ene derivatives 6a, b, respectively, all of which bear a functionally substituted silyl group in 2‐position and the boryl group in 3‐position. This is the result of selective intermolecular 1,2‐hydroboration of the vinyl or allyl group, followed by intramolecular 1,1‐organoboration of the alkynyl group. In the cases of 4a, b, potential electron‐deficient Si? H? B bridges are absent or extremely weak, whereas in 6a,b the existence of Si? H? B bridges is evident from the NMR spectroscopic data (1H, 11B, 13C and 29Si NMR). The molecular structure of 4b was determined by X‐ray analysis. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
The synthesis of two novel titanium carbene complexes from the bis(thiophosphinoyl)methanediide geminal dianion 1 (SCS2?) is described. Dianion 1 reacts cleanly with 0.5 equivalents of [TiCl4(thf)2] to afford the bis‐carbene complex [(SCS)2Ti] ( 2 ) in 86 % yield. The mono‐carbene complex [(SCS)TiCl2(thf)] ( 3 ) can also be obtained by using an excess of [TiCl4(thf)2]. The structures of 2 and 3 are confirmed by X‐ray crystallography. A strong nucleophilic reactivity towards various electrophiles (ketones and aldehydes) is observed. The reaction of 3 with N,N′‐dicyclohexylcarbodiimide (DCC) and phenyl isocyanate leads to the formation of two novel diphosphinoketenimines 8 a and 8 b . The bis‐titanium guanidinate complex 9 is trapped as the by‐product of the reaction with DCC. The X‐ray crystal structures of 8 a and 9 are presented. The mechanism of the reaction between complex 3 and DCC is rationalized by DFT studies.  相似文献   

11.
The syntheses of methyl 4‐(4‐nitrophenyl)‐3‐oxomorpholine‐2‐carboxylate ( 3a ) and ethyl 4‐(4‐nitrophenyl)‐2‐oxomorpholine‐3‐carboxylate ( 5b ), important building blocks for the synthesis of factor Xa inhibitor rivaroxaban analogs with potential dual antithrombotic activity, via Rh2(OAc)4‐catalyzed O? H and N? H carbene insertion reactions are described.  相似文献   

12.
Treatment of the ligand 6‐aza‐2‐thiothymine (ATT, HL, 1 ) with palladium chloride in methanol forms the ionic complex [(HL)4Pd]Cl2·8MeOH ( 2 ), while its reaction with palladium iodide in same solvent produces the neutral complex trans‐[(HL)2PdI2]·2MeOH ( 3 ) in high yields. The reaction of 1 with Na2[PdCl4] in the presence of sodium acetate in a molar ratio of 2:1:2 and with platinum(II) chloride in presence of sodium acetate led to the dimer tetranuclear complexes [(L4Pd2)NaCl]2·8MeOH ( 4 ) and [L4Pt2Cl2]·6MeOH·H2O ( 5 ). The latter is the first PtIII complex of the ligand. All complexes were characterized by elemental analyses and IR spectroscopy and the crystal structures of 2 , 3 , 4 and 5 are determined by single‐crystal X‐ray diffraction. Crystal data for 2 at ?80 °C: triclinic space group , a = 1006.6(1), b = 1006.9(1), c = 1158.1(1) pm, α = 85.20(1)°, β = 83.84(1)°, γ = 88.91(1)°, Z = 1, R1 = 0.0278; for 3 at ?80 °C: triclinic space group , a = 490.5(1), b = 977.2(2), c = 1116.8(2) pm, α = 90.26(1)°, β = 102.33(1)°, γ = 96.08(1)°, Z = 1, R1 = 0.0394; for 4 at ?80 °C: orthorhombic space group Ccca, a = 1791.7(2), b = 1874.1(2), c = 2044.0(1) pm, Z = 4, R1 = 0.0341 and for 5 at ?80 °C: monoclinic space group P21/c, a = 1464.3(1), b = 2003.7(1), c = 1368.5(1) pm, β = 95.66(1)°, Z = 4, R1 = 0.0429.  相似文献   

13.
A bimolecular rate constant,kDHO, of (29 ± 9) × 10?12 cm3 molecule?1 s?1 was measured using the relative rate technique for the reaction of the hydroxyl radical (OH) with 3,5‐dimethyl‐1‐hexyn‐3‐ol (DHO, HC?CC(OH)(CH3)CH2CH(CH3)2) at (297 ± 3) K and 1 atm total pressure. To more clearly define DHO's indoor environment degradation mechanism, the products of the DHO + OH reaction were also investigated. The positively identified DHO/OH reaction products were acetone ((CH3)2C?O), 3‐butyne‐2‐one (3B2O, HC?CC(?O)(CH3)), 2‐methyl‐propanal (2MP, H(O?)CCH(CH3)2), 4‐methyl‐2‐pentanone (MIBK, CH3C(?O)CH2CH(CH3)2), ethanedial (GLY, HC(?O)C(?O)H), 2‐oxopropanal (MGLY, CH3C(?O)C(?O)H), and 2,3‐butanedione (23BD, CH3C(?O)C(?O)CH3). The yields of 3B2O and MIBK from the DHO/OH reaction were (8.4 ± 0.3) and (26 ± 2)%, respectively. The use of derivatizing agents O‐(2,3,4,5,6‐pentalfluorobenzyl)hydroxylamine (PFBHA) and N,O‐bis(trimethylsilyl)trifluoroacetamide (BSTFA) clearly indicated that several other reaction products were formed. The elucidation of these other reaction products was facilitated by mass spectrometry of the derivatized reaction products coupled with plausible DHO/OH reaction mechanisms based on previously published volatile organic compound/OH gas‐phase reaction mechanisms. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 534–544, 2004  相似文献   

14.
Synthesis and Crystal Structure of the Nitrido Complexes [(n‐Bu)4N]2[{(L)Cl4Re≡N}2PtCl2] (L = THF und H2O) and [(n‐Bu)4N]2[(H2O)Cl4Re≡N‐PtCl(μ‐Cl)]2 The threenuclear complex [(n‐Bu)4N]2[{(THF)Cl4Re≡N}2—PtCl2] ( 1a ) is obtained by the reaction of [(n‐Bu)4N][ReNCl4] with [PtCl2(C6H5CN)2] in THF/CH2Cl2. It forms red crystals with the composition 1a · 2 CH2Cl2 crystallizing in the tetragonal space group I41/a with a = 3186.7(2); c = 1311.2(1) pm and Z = 8. If the reaction of the educts is carried out without THF, however under exposure to air the compound [(n‐Bu)4N]2[{(H2O)Cl4Re≡N}2PtCl2] ( 1b ) is obtained as red trigonal crystals with the space group R3 and a = 3628.3(3), c = 1231.4(1) pm and Z = 9. In the centrosymmetric complex anions [{(L)Cl4Re≡N}2PtCl2]2— a linear PtCl2moiety is connected in a trans arrangement with two complex fragments [(L)Cl4Re≡N] via asymmetric nitrido bridges Re≡dqN‐Pt. For PtII such results a square‐planar coordination PtCl2N2. The linear nitrido bridges are characterized by distances Re‐N = 169.5 pm and Pt‐N = 188.8 pm ( 1a ), respectively, Re‐N = 165.6 pm and Pt‐N = 194.1 pm ( 1b ). By the reaction of [(n‐Bu)4N][ReNCl4] with PtCl4 in CH2Cl2 platinum is reduced forming the heterometallic ReVI/PtII complex, [(n‐Bu)4N]2[(H2O)Cl4Re≡N‐PtCl(μ‐Cl)]2 ( 2 ). It crystallizes in the monoclinic space group C2/c with a = 2012.9(1); b = 1109.0(2); c = 2687.4(4) pm; β = 111.65(1)° and Z = 4. In the central unit ClPt(μ‐Cl)2PtCl of the anionic complex [(H2O)Cl4Re≡N‐PtCl(μ‐Cl)]22— with the symmetry C2 the coordination of the Pt atoms is completed by two nitrido bridges Re≡N‐Pt to nitrido complex fragments [(H2O)Cl4Re≡N] forming a square‐planar arrangement for the Pt atoms. The distances in the linear nitrido bridges are Re‐N = 165.9 pm and Pt‐N = 190.1 pm.  相似文献   

15.
A class of extended 2,5‐disubstituted‐1,3,4‐oxadiazoles R1‐C6H4‐{OC2N2}‐C6H4‐R2 (R1=R2=C10H21O 1 a , p‐C10H21O‐C6H4‐C?C 3 a , p‐CH3O‐C6H4‐C?C 3 b ; R1=C10H21O, R2=CH3O 1 b , (CH3)2N 1 c ; F 1 d ; R1=C10H21O‐C6H4‐C?C, R2=C10H21O 2 a , CH3O 2 b , (CH3)2N 2 c , F 2 d ) were prepared, and their liquid‐crystalline properties were examined. In CH2Cl2 solution, these compounds displayed a room‐temperature emission with λmax at 340471 nm and quantum yields of 0.730.97. Compounds 1 d , 2 a – 2 d , and 3 a exhibited various thermotropic mesophases (monotropic, enantiotropic nematic/smectic), which were examined by polarized‐light optical microscopy and differential scanning calorimetry. Structure determination by a direct‐space approach using simulated annealing or parallel tempering of the powder X‐ray diffraction data revealed distinctive crystal‐packing arrangements for mesogenic molecules 2 b and 3 a , leading to different nematic mesophase behavior, with 2 b being monotropic and 3 a enantiotropic in the narrow temperature range of 200210 °C. The structural transitions associated with these crystalline solids and their mesophases were studied by variable‐temperature X‐ray diffractometry. Nondestructive phase transitions (crystal‐to‐crystal, crystal‐to‐mesophase, mesophase‐to‐liquid) were observed in the diffractograms of 1 b, 1 d , 2 b, 2 d , and 3 a measured at 25200 °C. Powder X‐ray diffraction and small‐angle X‐ray scattering data revealed that the structure of the annealed solid residue 2 b reverted to its original crystal/molecular packing when the isotropic liquid was cooled to room temperature. Structure–property relationships within these mesomorphic solids are discussed in the context of their molecular structures and intermolecular interactions.  相似文献   

16.
Osmium hydrido vinylidene 1 shows diverse cyclization reactivity with activated terminal alkynes. Treatment of 1 with HC?CCOR′ (R′=OEt and Me) gave osmafurans 3 a and 3 b via osmium alkenyl/vinylidenes 2 a and 2 b . In addition, 1 reacted with HC?CCH(OH)C?CH to yield osmabenzene 4 , in which the alkynol acted as a C5 fragment to cyclize with 1 . Mechanistic analysis indicates that these reactions and the previous formal [3+3] cycloadditions between 1 and HC?CCH(OH)R (R=Ph, Et, and vinyl) or HC?CCH(OEt)2 all go through similar osmabutadiene intermediates. Subsequently, the intermediates either took a “coordination and cyclization” process or a “carbon–carbon coupling” path to cyclization, depending on the coordination ability of substituents on the terminal alkenyl carbon atom.  相似文献   

17.
Reactions of [ReH5(PMe2Ph)3] with alkynols HC≡CC(OH)(R)C≡CSiMe3 (R=tBu, iPr, 1‐adamantyl) in the presence of HCl give the vinylcarbyne complexes [Re{≡CCH?C(R)C≡CSiMe3}Cl2(PMe2Ph)3], which react with tBuMgCl to give [Re{≡CCH?C(R)C≡CSiMe3}HCl(PMe2Ph)3]. Treatment of [Re{≡CCH?C(R)C≡CSiMe3}HCl(PMe2Ph)3] with nBu4NF gives [Re{≡CCH?C(R)C≡CH}HCl(PMe2Ph)3], which first isomerizes to the bicyclic complexes [Re{CH?CH? C(R)?CCH?}Cl(PMe2Ph)3], and then to the rhenabenzynes [Re{≡CCH?C(R)CH?CH}Cl(PMe2Ph)3]. The NMR spectroscopic and structural data as well as the aromatic stabilization energy (ASE) and nucleus‐independent chemical‐shift (NICS) values suggest that these rhenabenzynes have aromatic character.  相似文献   

18.
The dirhodium carbene derived from bis(4‐methoxyphenyl)diazomethane and [Rh(tpa)4]?CH2Cl2 (tpa=triphenylacetate) was characterized by UV, IR, and NMR spectroscopy, HRMS, as well as by X‐ray diffraction. The isolated complex exhibits prototypical rhodium carbene reactivity in that it cyclopropanates 4‐methoxystyrene at low temperature. Experimental structural information on this important type of reactive intermediate is extremely scarce and thus serves as a reference point for mechanistic discussions of rhodium catalysis in general. Moreover, dirhodium carbenes are shown to undergo remarkably facile carbene transfer on treatment with [LAuNTf2] (L=phosphine). This formal transmetalation opens a valuable new entry into gold carbene complexes that cannot easily be made otherwise; three fully characterized representatives illustrate this aspect.  相似文献   

19.
Herein, we report the syntheses of silicon‐ and tin‐containing open‐chain and eight‐membered‐ring compounds Me2Si(CH2SnMe2X)2 ( 2 , X=Me; 3 , X=Cl; 4 , X=F), CH2(SnMe2CH2I)2 ( 7 ), CH2(SnMe2CH2Cl)2 ( 8 ), cyclo‐Me2Sn(CH2SnMe2CH2)2SiMe2 ( 6 ), cyclo‐(Me2SnCH2)4 ( 9 ), cyclo‐Me(2?n)XnSn(CH2SiMe2CH2)2SnXnMe(2?n) ( 5 , n=0; 10 , n = 1, X= Cl; 11 , n=1, X= F; 12 , n=2, X= Cl), and the chloride and fluoride complexes NEt4[cyclo‐ Me(Cl)Sn(CH2SiMe2CH2)2Sn(Cl)Me?F] ( 13 ), PPh4[cyclo‐Me(Cl)Sn(CH2SiMe2CH2)2Sn(Cl)Me?Cl] ( 14 ), NEt4[cyclo‐Me(F)Sn(CH2SiMe2CH2)2Sn(F)Me?F] ( 15 ), [NEt4]2[cyclo‐Cl2Sn(CH2SiMe2CH2)2SnCl2?2 Cl] ( 16 ), M[Me2Si(CH2Sn(Cl)Me2)2?Cl] ( 17 a , M=PPh4; 17 b , M=NEt4), NEt4[Me2Si(CH2Sn(Cl)Me2)2?F] ( 18 ), NEt4[Me2Si(CH2Sn(F)Me2)2?F] ( 19 ), and PPh4[Me2Si(CH2Sn(Cl)Me2)2?Br] ( 20 ). The compounds were characterised by electrospray mass‐spectrometric, IR and 1H, 13C, 19F, 29Si, and 119Sn NMR spectroscopic analysis, and, except for 15 and 18 , single‐crystal X‐ray diffraction studies.  相似文献   

20.
Three novel ruthenium‐catalyzed cyclizations of enynes were developed. In each cyclization, a ruthenacyclopentene derived from enyne and Cp*RuCl(cod) is a common intermediate. When an enyne having an alkyl, an ester, or a formyl group on an alkyne was reacted with Cp*RuCl(cod) under ethylene gas, ethylene was inserted into the ruthenium‐sp2 carbon bond of ruthenacyclopentene to afford ruthenacycloheptene, and β‐hydrogen elimination followed by reductive elimination occurred to give a cyclic compound having a 1,3‐diene moiety. When an acyl group was placed on the alkyne, the carbonyl oxygen coordinated to the ruthenium metal of ruthenacyclopentene to produce a ruthenium carbene complex, which reacted with ethylene to give a cyclic compound having a cyclopropane ring on the substituent. On the other hand, when the substituent on the alkyne was pent‐4‐enyl, insertion of an alkene part into ruthenacyclopentene followed by reductive elimination gave a tricyclic compound by a ruthenium‐catalyzed [2 + 2 + 2] cyclization of diene and an alkyne. DOI 10.1002/tcr.201100003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号