首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Mixed‐donor atom tetramethoxy resorcinarene bis‐thiacrown hosts, in which the crown unit contains both hard oxygen and soft sulfur donor atoms, were synthesized for soft metal cation binding. The binding properties were investigated both in solution and in the solid state by NMR spectroscopy and X‐ray crystallography. It was found that the resorcinarene bis‐thiacrowns were able to complex silver cations with remarkable affinity forming readily 1:2 host–guest complexes in solution. The solid state structures also revealed that the bis‐thiacrowns form silver complexes in an unanticipated endo‐ and exo‐cavity fashion within the same host molecule. Both the solution and solid state studies indicated the sulfur atoms to be the major contributing donor atoms in forming the binding interactions with silver cations.  相似文献   

3.
Benzene, toluene, ethylbenzene, the isomers of xylene, and trimethylbenzene are harmful volatile organic compounds and pose risks to human health and the environment. However, there are currently no effective chemosensors for vapors of these compounds. A porous supramolecular host for turn‐on fluorogenic and chromogenic detection of the vapors of small aromatic hydrocarbons is presented. The host was constructed from a naphthalenediimide derivative that was supramolecularly connected to tris(pentafluorophenyl)borane. The amorphous powder form of the host allowed for effective accommodation of vapors of small aromatic hydrocarbons, resulting in a guest‐dependent fluorescence emission. Increases in the fluorescence yield of 76‐, 46‐, and 37‐fold were observed with toluene, benzene, and m‐xylene, respectively. Negligible responses were obtained with common organic solvents. This simple supramolecular host could be applied as a useful sensor of small aromatic hydrocarbon vapors.  相似文献   

4.
5.
Endowing supramolecular gelators with cavities opens up a number of opportunities not possible with other gel systems. The well‐established host–guest chemistry of cavitands can be utilized to build up and break down gel structures, introduce responsive functionalities, or enhance selectivity in applications such as catalysis and extraction. Cavity‐containing gelators provide an excellent case study for how different aspects of supramolecular chemistry can be used intelligently to create responsive materials.  相似文献   

6.
Forces to reckon with : Supramolecular complexes, such as the one shown, are normally based on a combination of different interactions such as ion pairing, hydrogen bonds, and stacking interactions. The not always simple characterization of the nature and strength of intermolecular forces provides assistance to the understanding of biomimetic systems, as well as for the design of synthetic receptors, drugs, and intelligent materials.

  相似文献   


7.
Remarkably enhanced stability of the self‐assembled hydrogen‐bonded heterocapsule 1?2 by the encapsulation of 1,4‐bis(1‐propynyl)benzene 3 a was found with Ka=1.14×109 M ?1 in CDCl3 and Ka2=1.59×108 M ?2 in CD3OD/CDCl3 (10 % v/v) at 298 K. The formation of 3 a @( 1?2 ) was enthalpically driven (ΔH°<0 and ΔS°<0) and there was a unique inflection point in the correlation between ΔH° versus ΔS° as a function of polar solvent content. The ab initio calculations revealed that favorable guest–capsule dispersion and electrostatic interactions between the acetylenic parts (triple bonds) of 3 a and the aromatic inner space of 1?2 , as well as less structural deformation of 1?2 upon encapsulation of 3 a , play important roles in the remarkable stability of 3 a @( 1?2 ).  相似文献   

8.
9.
A new class of polymeric thermometers with a memory function is reported that is based on the supramolecular host–guest interactions of poly(N‐isopropylacrylamide) (PNIPAM) with side‐chain naphthalene guest moieties and the tetracationic macrocycle cyclobis(paraquat‐p‐phenylene) (CBPQT4+) as the host. This supramolecular thermometer exhibits a memory function for the thermal history of the solution, which arises from the large hysteresis of the thermoresponsive LCST phase transition (LCST=lower critical solution temperature). This hysteresis is based on the formation of a metastable soluble state that consists of the PNIPAM–CBPQT4+ host–guest complex. When heated above the transition temperature, the polymer collapses, and the host–guest interactions are disrupted, making the polymer more hydrophobic and less soluble in water. Aside from providing fundamental insights into the kinetic control of supramolecular assemblies, the developed thermometer with a memory function might find use in applications spanning the physical and biological sciences.  相似文献   

10.
The {W36} isopolyoxotungstate cluster provides a stable inorganic molecular platform for the binding of inorganic and organic guest molecules. This is achieved by a binding pocket formed by six terminal oxo ligands located in the central cavity of the all‐inorganic cation binding host. Previously it was shown that the cluster can specifically bind primary amines and importantly, functionalized diamines through a combination of electrostatic and hydrogen bonding interactions. Here we transform this assembly strategy to utilize the binding of long‐chain alkyldiammonium guest cations to physically define the supramolecular structure of the clusters with respect to each other and demonstrate the structure direction as a function of alkyl chain length. The systematic variation of the chain length gives access to five supramolecular assemblies which were all fully characterized using single crystal XRD, TGA, 1H NMR, and elemental analysis. In compound 1 , diprotonated 1,8‐diaminooctane molecules link the {W36} clusters into infinite 1D zigzag chains, whereas compounds 2 and 3 feature trimeric {W36} assemblies directly connected through protonated 1,9‐diaminononane ( 2 ) or 1,10‐diaminodecane ( 3 ) linkers . Compound 4 contains dumb‐bell shaped dimeric units as a result of direct center‐to‐center linkages between the {W36} clusters formed by protonated 1,12‐diaminododecane. In compound 5 , triply protonated bis(hexamethylene)triamine was employed to obtain linear 1D chains of directly connected {W36} cluster units.  相似文献   

11.
A peptidomimetic compound undergoes a reversible single‐crystal‐to‐single‐crystal transformation upon guest release/uptake with the transformation involving a drastic conformational change. The extensive and reversible alteration in the solid state is connected to the formation of an unprecedented “CH–π zipper” which can reversibly open and close (through the formation of CH–π interactions), thus allowing for guest sensing.  相似文献   

12.
13.
Highly efficient light‐harvesting systems were successfully fabricated in aqueous solution based on the supramolecular self‐assembly of a water‐soluble pillar[6]arene (WP6), a salicylaldehyde azine derivative (G), and two different fluorescence dyes, Nile Red (NiR) or Eosin Y (ESY). The WP6‐G supramolecular assembly exhibits remarkably improved aggregation‐induced emission enhancement and acts as a donor for the artificial light‐harvesting system, and NiR or ESY, which are loaded within the WP6‐G assembly, act as acceptors. An efficient energy‐transfer process takes place from the WP6‐G assembly not only to NiR but also to ESY for these two different systems. Furthermore, both of the WP6‐G‐NiR and WP6‐G‐ESY systems show an ultrahigh antenna effect at a high donor/acceptor ratio.  相似文献   

14.
15.
The application of cyclodextrin (CD)‐based host–guest interactions towards the fabrication of functional supramolecular assemblies and hydrogels is of particular interest in the field of biomedicine. However, as of late they have found new applications as advanced functional materials (e.g., actuators and self‐healing materials), which have renewed interest across a wide range of fields. Advanced supramolecular materials synthesized using this noncovalent interaction, exhibit specificity and reversibility, which can be used to impart reversible cross‐linking, specific binding sites, and functionality. In this review, various functional CD‐based supramolecular assemblies and hydrogels will be outlined with the focus on recent advances. In addition, an outlook will be provided on the direction of this rapidly developing field.

  相似文献   


16.
The components of a 1:2 mixture of meso‐tetrakis(4‐dodecyl‐3,5‐dihydroxyphenyl)porphyrin ( 1 ) and a bowl‐shaped tetrakis(4‐pyridylethynyl)cavitand ( 2 ) in CDCl3 or C6D6 self‐assemble quantitatively into the doubly cavitand‐capped porphyrin capsule 2?1?2 through eight ArOH ??? Npy hydrogen bonds. Capsule 2?1?2 possesses two cavities divided by the porphyrin ring and encapsulates two molecules of 1‐acetoxy‐3,5‐dimethoxybenzene ( G ) as a guest to form G / G @( 2?1?2 ). Remarkable solvent effect was observed, in which the apparent association constant of 2?1?2 with G in C6D6 was much greater than that in CDCl3.  相似文献   

17.
Tetraannulation of a resorcinarene‐octaamino cavitand with ferrocenecarboxaldehyde allows the preparation of a tetrabenzimidazole‐resorcinarene cavitand with four ferrocenyl moieties directly linked to the C2 atom of the imidazole units. Oxidation of the four ferrocenyl moieties produces important structural modifications of the molecule, as indicated by DFT calculations performed for the neutral and tetraoxidized forms of the cavitand. By means of 1H NMR spectroscopic analysis, the encapsulating properties of the new tetraferrocenyl‐resorcinarene cavitand toward a series of ammonium salts were evaluated, and a clear cutoff point in binding affinity with respect to size was observed. Cyclic voltammetric studies allowed us to estimate the relative association constants for the neutral and oxidized forms of the cavitand, thus indicating that the guest was bound to the neutral (reduced) state of the cavitand and was released from the oxidized form. These redox‐addressable conformational and binding properties of the resorcinarene‐tetraferrocenyl cavitand constitute all the necessary features of a redox‐switchable molecular gripper. By means of mass‐spectrometric analysis, we could unambiguously confirm the molar stoichiometry of the host–guest complex (1:1) and assess the strong guest encapsulation, as indicated by triggering the covalent coupling between host and guest in the gas phase.  相似文献   

18.
Two bowl‐shaped cavities , each having three OH? hydrogen‐bond donors at its base, are present in double‐cone‐shaped metallacrown anion host [Co6(μ‐OH)6(μ‐L)6]m+ ( 1 m + ; HL=3{5}‐(pyrid‐2‐yl)‐5{3}‐(tert‐butyl)pyrazole). Depending on its affinity for the anions present, it can be isolated in its CoIII3CoII3 (m=3; e.g., 1 (ClO4)3) and CoIII2CoII4 (m=2; e.g., 1 (BF4)2 ? n H2O) oxidation states. See picture for photographs of isolated salts.

  相似文献   


19.
N‐Alkyl ammonium resorcinarene salts (NARYs, Y=triflate, picrate, nitrate, trifluoroacetates and NARBr) as tetravalent receptors, are shown to have a strong affinity for chlorides. The high affinity for chlorides was confirmed from a multitude of exchange experiments in solution (NMR and UV/Vis), gas phase (mass spectrometry), and solid‐state (X‐ray crystallography). A new tetra‐iodide resorcinarene salt (NARI) was isolated and fully characterized from exchange experiments in the solid‐state. Competition experiments with a known monovalent bis‐urea receptor ( 5 ) with strong affinity for chloride, reveals these receptors to have a much higher affinity for the first two chlorides, a similar affinity as 5 for the third chloride, and lower affinity for the fourth chloride. The receptors affinity toward chloride follows the trend K1?K2?K3≈ 5 >K4, with Ka=5011 m ?1 for 5 in 9:1 CDCl3/[D6]DMSO.  相似文献   

20.
Despite the remarkable progress made in controllable self‐assembly of stimuli‐responsive supramolecular polymers (SSPs), a basic issue that has not been consideration to date is the essential binding site. The noncovalent binding sites, which connect the building blocks and endow supramolecular polymers with their ability to respond to stimuli, are expected to strongly affect the self‐assembly of SSPs. Herein, the design and synthesis of a dual‐stimuli thermo‐ and photoresponsive Y‐shaped supramolecular polymer (SSP2) with two adjacent β‐cyclodextrin/azobenzene (β‐CD/Azo) binding sites, and another SSP (SSP1) with similar building blocks, but only one β‐CD/Azo binding site as a control, are described. Upon gradually increasing the polymer solution temperature or irradiating with UV light, SSP2 self‐assemblies with a higher binding‐site distribution density; exhibits a flower‐like morphology, smaller size, and more stable dynamic aggregation process; and greater controllability for drug‐release behavior than those observed with SSP1 self‐assemblies. The host–guest binding‐site‐tunable self‐assembly was attributed to the positive cooperativity generated among adjacent binding sites on the surfaces of SSP2 self‐assemblies. This work is beneficial for precisely controlling the structural parameters and controlled release function of SSP self‐assemblies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号