首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isostructural compounds Yb2MgSi2, La2.05Mg0.95Si2, and Ce2.05Mg0.95Si2, as well as Yb2Li0.5Ge2 and Yb1.75Mg0.75Si2, respectively, were synthesized from stoichiometric mixtures of the corresponding elements in sealed Nb‐ ampoules under argon atmosphere. The structures were determined by single crystal X‐ray diffraction: Yb2MgSi2 (P4/mbm (No. 127), a = 7.056(1), c = 4.130(1) Å3, Z = 2), La2.05Mg0.95Si2 (P4/mbm, a = 7.544(1), c = 4.464(1) Å3, Z = 2), and Ce2.05Mg0.95Si2 (P4/mbm, a = 7.425(1), c = 4.370(1) Å3, Z = 2), Yb2Li0.5Ge2 (Pnma (No. 62), a = 7.0601(6), b = 14.628(1), c = 7.6160(7) Å, V = 786.5Å3, Z = 4), Yb1.75Mg0.75Si2 (Pnma, a = 6.9796(1), b = 14.4009(1), c = 7.5357(1) Å, V = 757.43(2) Å3, Z = 4). All compounds contain exclusively Tt‐Tt dumb‐bells (Tt = Si, Ge). The Si‐Si Zintl anions exhibit only very small variations of bond lengths which seem to be more due to cation matrix effects than to effective bond orders.  相似文献   

2.
High‐pressure modifications of the rare earth oxide fluorides REOF (RE = Pr, Nd, Sm – Gd) were successfully synthesized under conditions of 11 GPa and 1200 °C applying the multianvil high‐pressure/high‐temperature technique. Single crystals of HP‐REOF (RE = Nd, Sm, Eu) were obtained making it possible to analyze the products by means of single‐crystal X‐ray diffraction. The compounds HP‐REOF (RE = Nd, Sm, Eu) crystallize in the orthorhombic α‐PbCl2‐type structure (space group Pnma, No. 62, Z = 4) with the parameters a = 632.45(3), b = 381.87(2), c = 699.21(3) pm, V = 0.16887(2) nm3, R1 = 0.0156, and wR2 = 0.0382 for HP‐NdOF, a = 624.38(3), b = 376.87(2), c = 689.53(4) pm, V = 0.16225(2) nm3, R1 = 0.0141, and wR2 = 0.0323 for HP‐SmOF, and a = 620.02(4), b = 374.24(3), c = 686.82(5) pm, V = 0.15937(2) nm3, R1 = 0.0177, and wR2 = 0.0288 for HP‐EuOF. Calculations of the bond valence sums clearly showed that the oxygen atoms occupy the tetrahedrally coordinated position, whereas the fluorine atoms are fivefold coordinated in form of distorted square‐pyramids. The crystal structures and properties of HP‐REOF (RE = Nd, Sm, Eu) are discussed and compared to the isostructural phases and the normal‐pressure modifications of REOF (RE = Nd, Sm, Eu). Furthermore, results of investigations by EDX and Raman measurements including quantum mechanical calculations are presented.  相似文献   

3.
Sodium magnesium selenite NaMg2(OH)(SeO3)2 and rubidium zinc selenite RbZn2(OH)(SeO3)2 were prepared by hydrothermal reactions. The crystal structures of the title compounds were determined by single‐crystal X‐ray diffraction. NaMg2(OH)(SeO3)2 crystallizes in the orthorhombic space group Pnma (no. 62) with lattice parameters a = 13.1919(10), b = 6.0415(4), c = 8.2182(6) Å, and Z = 4 and RbZn2(OH)(SeO3)2 crystallizes in the triclinic space group P$\bar{1}$ (no. 2) with lattice parameters a = 4.8698(5), b = 7.3446(8), c = 11.7796(12) Å, α = 82.554(3), β = 78.456(2), γ = 71.603(3)°,and Z = 2. The structure of NaMg2(OH)(SeO3)2 is a three‐dimensional framework consisting of edge‐sharing MgO6 octahedra and trigonal pyramidal SeO32– groups, whereas the structure of RbZn2(OH)(SeO3)2 is a two‐dimensional layers structure consisting of corner‐sharing [Zn2O7] dimers linked by trigonal pyramidal SeO32– groups. The compounds were characterized by the solid state UV/Vis/NIR diffuse reflectance, and FT‐IR spectroscopy.  相似文献   

4.
The compounds BaLn2Se4 (Ln = rare‐earth metal = lanthanide = Er, Tm and Yb), namely barium di(erbium/thulium/ytterbium) tetraselenide, crystallize in the orthorhombic space group Pnma in the CaFe2O4 structure type. In this structure type, all atoms possess m symmetry. The Ln atoms are octahedrally coordinated by six Se atoms. A three‐dimensional channel structure is formed by the corner‐ and edge‐sharing of these LnSe6 octahedra. The Ba atoms are coordinated to eight Se atoms in a bicapped trigonal–prismatic arrangement, and they occupy the channels of the three‐dimensional framework.  相似文献   

5.
The isotypic title compounds are obtained in high yield from the reactions of Ba, BaO, and Ge (Si) in welded Ta containers slowly cooled from 1100 °C. The structure of Ba3GeO was determined by single-crystal X-ray diffraction (orthorhombic symmetry; Pnma (No. 62); a = 7.591(1), b = 10.728(1), c = 7.551(1) Å; Z = 4; R = 0.058, Rw = 0.065 for 780 reflections (I > 3σ(I)) with 2θmax = 60°)). The structure consists of slightly deformed OBa6 octahedra that are tilted by £ 14° with respect to their positions in the ideal inverse perovskite structure. These distortions optimize eight of the original twelve equal Ba–Ge distances. The ideal cubic Ca3SiO (a = 4.699(1) Å) has also been synthesized.  相似文献   

6.
The structures of [FeIII(tacud)Cl3] ( 1 ) and [FeIII(tacn)Cl3] ( 2 ) (tacud = 1, 4, 8‐triazacycloundecane, tacn = 1, 4, 7‐triazacyclononane) are reported. Both compounds crystallize in the orthorhombic space group Pnma with a = 12.5570(9), b = 12.0028(9), c = 8.2577(6) Å, V = 1244.59(16) Å3, and Z = 4 for 1 and a = 12.095(4), b = 11.125(4), c = 7.963(3) Å, V = 1071.5(6) Å3, and Z = 4 for 2 . The structures of 1 and 2 feature iron(III) in distorted octahedral arrangement with three facially coordinated nitrogen ligands and three chlorides. Bidirectional intermolecular hydrogen bonding between N–H groups and coordinated chlorides is seen for 1 and 2 . Compound 1 is the first example of iron(III) bonded to tacud and compound 2 is only the second structure reported of a 1:1 complex between iron and tacn. The Fe3+/2+ redox couple for 1 is observed at E1/2 = 0.25 V (ΔEp = 99 mV), and for 2 at E1/2 = 0.09 V (ΔEp = 108 mV) versus NHE in DMF at 298 K. Comparison of structural, magnetic, and electrochemical properties for 1 and 2 reveal subtle differences consistent with the stronger coordinating properties of tacn relative to tacud.  相似文献   

7.
Preparation and Crystal Structures of Li26Na58Ba38Ex Phases (E = N, H; x = 0 – 1) Li26Na58Ba38Ex (E = N, H; x = 0–1) were prepared as a majority phase by the reactions of the metals with Ba(N3)2 or BaH2 at 250 °C for five days. According to single crystal and powder X‐ray diffraction investigation, all compounds are cubic, space group with the unit cell parameter a ranging from 27.335(2) (x = 0) to 27.554(3) (x = 1, E = N, H) Å and Z = 4. This compound series can be described as a filled variant of Li13Na29Ba19, in which nitrogen or hydrogen atoms are found in the centre of Li26 clusters in tetrahedral environment. Li26Na58Ba38Ex represents a new group of metal‐rich compounds extending the growing family of subnitrides.  相似文献   

8.
Polycrystalline Ba2LnSbO6 (Ln = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) are cubic, perovskite-type compounds, space group Fm3m (No. 225), Z = 4, with a values from a = 8.544(2) Å for Ba2NdSbO6 to a = 8.368(1) Å for Ba2YbSbO6. X-ray diffraction data for all the compounds and the results of magnetic measurements for two of them are given.  相似文献   

9.
Single crystals ((Ba0.78(1)Sr0.22)4O)Bi2 and ((Ba0.62(1)Sr0.38)10N2O)Bi4 were successfully prepared from melt beads of Ba, Sr, and Bi in nitrogen atmosphere with oxygen impurities. The phases can be prepared in single phase from the appropriate mixtures of alkaline‐earth metal, bismuth, and bismuth oxide upon heating in pure nitrogen atmosphere. ((Ba0.78(1)Sr0.22)4O)Bi2 crystallizes in the K2NiF4 structure type (space group I4/mmm, No. 139, a = 522.34(5) pm, c = 1844.0(2) pm, Z = 2, Rgt(F) = 0.039) with layers of vertex‐sharing octahedra ((Ba,Sr)4/2Ba2O). ((Ba0.62(1)Sr0.38)10N2O)Bi4 crystallizes as an isotype of Sr4Ti3O10 (space group I4/mmm, No. 139, a = 531.3(1) pm, c = 3983.2(4) pm, Z = 2, Rgt(F) = 0.050) containing slabs of three layers of vertex‐sharing octahedra further connected via corners. These compounds are interpreted in terms of members of an inverse Ruddlesden‐Popper series with the general formula n (A3ONn?1)Bi · ABi or (A3n+1ONn?1)Bin+1, respectively, with n = 1, 3. Partial order of the alkaline‐earth metal ions is analyzed.  相似文献   

10.
Four related quaternary compounds containing rare‐earth metals have been synthesized employing the molten flux method and metathesis. The reactions of Eu and Rb2S5 with Si and Ge in evacuated fused silica ampoules at 725 °C for 150 h yielded RbEuSiS4 ( I ) and RbEuGeS4 ( II ), respectively. On the other hand, a reaction between CeCl3 and K4Ge4Se10 at 650 °C for 148 h has yielded KCeGeSe4 ( III ) and KPrSiSe4( IV ) was obtained by the reaction of elemental Pr, Si and Se in KCl flux at 850 °C for 168 h. Crystal data for these compounds are as follows: I , orthorhombic, space group P212121 (#19), a = 6.392(1), b = 6.634(2), c = 17.001(3) Å, α = β = γ = 90°, Z = 4; II , monoclinic, space group P21/m (#11), a = 6.498(2), b = 6.689(3), c = 8.964(3) Å, β = 108.647(6)°, Z = 2; III , monoclinic, space group P21 (#4), a = 6.852(2), b = 7.025(2), c = 9.017(3) Å, β = 108.116(2)°, Z = 2; IV , monoclinic, space group P21 (#4), a = 6.736(2), b = 6.943(2), c = 8.990(1) Å, β = 108.262(2)°, Z = 2. The crystal structures of I ‐ IV contain two‐dimensional corrugated anionic layers of the general formula, [LnEQ4]? (Ln = Ce, Pr, Eu; E = Si, Ge and Q = S, Se) alternately piled upon layers of alkali cations. In addition to structural elucidation, Raman and UV‐visible spectroscopy, and magnetic measurements for compound III (KCeGeSe4) are also discussed.  相似文献   

11.
IntroductionSincethepioneerworksofClearfieldandcoworkersinthe 196 0s ,1,2 layeredmetalphosphateshaveattractedmuchattentionduetotheirapplicationsonionex change ,intercalation ,heterogeneouscatalysisandsorp tion .3 7Amongthenumerouslamellarphases ,theproto typical…  相似文献   

12.
Synthesis and Crystal Structures of α‐, β‐Ba3(PS4)2 and Ba3(PSe4)2 Ba3(PS4)2 and Ba3(PSe4)2 were prepared by heating mixtures of the elements at 800 °C for 25 h. Both compounds were investigated by single crystal X‐ray methods. The thiophosphate is dimorphic and undergoes a displacive phase transition at about 75 °C. Both modifications crystallize in new structure types. In the room temperature phase (α‐Ba3(PS4)2: P21/a; a = 11.649(3), b = 6.610(1), c = 17.299(2) Å, β = 90.26(3)°; Z = 4) three crystallographically independent Ba atoms are surrounded by ten sulfur atoms forming distorted polyhedra. The arrangement of the PS4 tetrahedra, isolated from each other, is comparable with the formation of the SO42? ions of β‐K2SO4. In β‐Ba3(PS4)2 (C2/m; a = 11.597(2), b = 6.727(1), c = 8.704(2) Å; β = 90.00(3)°; Z = 2) the PS4 tetrahedra are no more tilted along [001], but oriented parallel to each other inducing less distorted tetrahedra and polyhedra around the Ba atoms, respectively. Ba3(PSe4)2 (P21/a; a = 12.282(2), b = 6.906(1), c = 18.061(4) Å; β = 90.23(3)°; Z = 4) is isotypic to α‐Ba3(PS4)2 and no phase transition could be detected up to about 550 °C.  相似文献   

13.
In the title compound, C5H6Br2N2O2, all atoms except for the methyl group lie on a mirror plane in the space group Pnma (No. 62). All bond lengths are normal and the five‐membered ring is planar by symmetry. Two short intermolecular N—Br...O=C contacts [Br...O = 2.787 (2) and 2.8431 (19) Å] are present, originating primarily from the O‐atom lone pairs donating electron density to the antibonding orbitals of the N—Br bonds (delocalization energy transfers 3.27 and 2.11 kcal mol−1). The total stabilization energies of the Br...O interactions are 3.4828 and 2.3504 kcal mol−1.  相似文献   

14.
Ba6Mg10.8Li1.2Si12, the First Compound Containing Three Different Zintl Anions A novel quaternary Zintl phase of silicon is presented. The crystal structure of Ba6Mg10.8Li1.2Si12 (Pnma, a = 22.257(5), b = 4.5804(9), c = 14.007(3) Å) is the first example of a silicide with isolated silicon atoms, Si2 dumb‐bells and Si3 chains thus with three different Zintl anions within one structure. Accompanying quantumchemical investigations in the Extended Hückel framework give detailed insights in the present bond situation and support general trends found in unusual Zintl phases.  相似文献   

15.
The sterically encumbered ter­phenyl halides 2′‐chloro‐2,2′′,4,4′′,6,6′′‐hexaisopropyl‐1,1′:3′,1′′‐terphenyl, C36H49Cl, (I), 2′‐bromo‐2,2′′,4,4′′,6,6′′‐hexaisopropyl‐1,1′:3′,1′′‐terphenyl, C36H49Br, (II), and 2′‐iodo‐2,2′′,4,4′′,6,6′′‐hexaisopropyl‐1,1′:3′,1′′‐terphenyl, C36H49I, (III), crystallize in space group Pnma. They are isomorphous and isostructural with a plane of symmetry through the centre of the mol­ecule. The C–halide bond distances are 1.745 (3), 1.910 (4) and 2.102 (6) Å for (I)–(III), respectively.  相似文献   

16.
Crystallization and Structure Determination of an I2C=CI2 organometallic Donor/Acceptor Complex The rectangular D2h molecule I2C=CI2 contains 95.5% iodine with the rather bulky I substituents hiding the CC‐π‐system and heavily penetrating each other [1]. Starting both from the structure determination of a sublimed novel P21/n polymorph and extensive DFT calculations, numerous hitherto unknown donor/acceptor complexes of I2C=CI2 have been crystallized and structurally characterized [2]. Here we report the first adduct of tetraiodoethylene to a metalorganic complex, {[Pb2+(18‐crown‐6)(I)2]…I2C=CI2}, crystallized from lead(18‐crown‐6)diiodide and I2C=CI2 in chloroform. The structure consists of polymer chains with angles ∢IPbI of 159° and distances I…I2C=CI2 between 348 to 359 pm. Both the 18‐crown‐6 ligand and the chloroform solvent molecule included in the crystal are considerably disordered. Space group Pnma (IT Nr. 62), Z = 4, lattice dimensions at 150 K, a = 1724.2(2), b = 1416.4(2), c = 1330.8(2), V = 3250.0(8) · 106 pm3, R = 0.0428.  相似文献   

17.
The compounds Ae3Sn4?xBi1+x (Ae = Sr, Ba) with x < 1 have been synthesized by solid‐state reactions in welded Nb tubes at high temperature. Their structures were determined by single crystal X‐ray diffraction studies to be tetragonal; space group I4/mcm (No. 140); Z = 4, with a = 8.968(1) Å, c = 12.859(1) Å for Sr3Sn3.36Bi1.64(3) ( 1 ) and a = 9.248(2), c = 13.323(3) Å for Ba3Sn3.16Bi1.84(3) ( 2 ). The structure consists of two interpenetrating networks formed by a 3D Ae6/2Bi substructure (anti‐ReO3 type) forming the host, and layers of interconnected four‐member units [Sn4?xBix] with “butterfly”‐like shape as the guest. According to the Zintl‐Klemm concept, the compounds are slightly electron deficient and will be charge balanced for x = 1. The electronic structures of Ae3Sn4?xBi1+x calculated by the TB‐LMTO‐ASA method indicate that the compounds correspond to ideal semiconducting Zintl phases with a narrow band gap for x = 1 (zero‐gap semiconductor). The origin of the slight deviation from the optimal electron count for a valance compound is discussed.  相似文献   

18.
Red‐orange, transparent single crystals of EuCN2 (Pnma (62), a = 1232.41(9), b = 395.26(3) and c = 539.43(4) pm, Z = 4) are obtained by the reaction of EuN, C and NaN3 in arc‐welded Ta ampoules at 1300 K. The first ternary rare earth metal cyanamide is isotypic to α‐SrCN2 and shows the characteristic frequencies for the CN22— unit in the optical spectra (νs = 1244; νas = 1969 and 2087; δ = 655 / 666 cm—1).  相似文献   

19.
New Tin‐rich Stannides of the Systems AII‐Al‐Sn (AII = Ca, Sr, Ba) Four new tin‐rich intermetallics of the ternary systems Ca/Sr/Ba‐Al‐Sn were synthesized from stoichiometric amounts of the elements at maximum temperatures of 1200 °C. Their crystal structures, representing two new types, have been determined using single crystal x‐ray diffraction. Close to the 1:1 composition, the structures of the two isotypic compounds A18[Al4(Al/Sn)2Sn4][Sn4][Sn]2 (overall composition A9M8; A = Sr/Ba, tetragonal, space group P4/mbm, a = 1325.9(1)/1378.6(1), c = 1272.8(2)/1305.4(1) pm, Z = 4, R1 = 0.0430/0.0293) contain three different anionic Sn/Al building units: Isolated Sn atoms (motif I) coordinated by the alkaline earth cations only (comparable to Ca2Sn), linear Sn chains (II), which are comparable to the anions in trielides related to the W5Si3 structure type and finally octahedral clusters [Al4M2Sn4] (III), composed of four Al atoms forming the center plane, two statistically occupied Al/Sn atoms at the apexes and four exohedral Sn attached to Al. Close to the AM2 composition, two isotypic tin‐rich intermetallics A9[Al3Sn2][(Sn/Al)4]Sn6 (overall composition A9M15; A = Ca/Sr; space group C2/m, a = 2175.2(1)/2231.0(2), b = 1210.8(1)/1247.0(1), c = 1007.4(1)/1042.0(2) pm, β = 103.38(1)/103.42(1)°, Z = 2, R1 = 0.0541/0.0378) are formed. Their structure is best described as a complex three‐dimensional network, that can be considered to consist of the building units of the binary border phases too, i.e. linear zig‐zag chains of Sn (motif I) like in CaSn, ladders of four‐bonded Sn/Al atoms (II) like in SrAl2 and trigonal‐bipyramidal clusters [Al3Sn2] (III) also present in Ba3Al5. Despite the complex structures, some statistically occupied Al/Sn positions and the small disorder of one building unit, the bonding in both structure types can be interpreted using the Zintl concept and Wade's electron counting rules when taking partial Sn‐Sn bonds into account.  相似文献   

20.
Four alkaline earth oxotellurate(IV) halides with common formula M3Te2O6X2 (M = Sr, Ba; X = Cl, Br) have been prepared as polycrystalline powders and/or in the form of single crystals. All compounds crystallize in the cubic space group Fd$\bar{3}$ m with cell parameters a = 15.9351(4) Å for Sr3Te2O6Cl2 (single‐crystal X‐ray data), 16.052(5) Å for Sr3Te2O6Br2 (powder X‐ray data), 16.688(2) Å for Ba3Te2O6Cl2 (single‐crystal X‐ray data) and 16.8072(3) Å for Ba3Te2O6Br1.64Cl0.36 (single‐crystal X‐ray data). The results of the crystal structure analyses reveal a rigid ${3}\atop{{\infty}}$ [M3Te2O6]2+ framework which can be described as being composed of regular octahedra of two types of chemically non‐bonded M6 octahedra that are capped by trigonal pyramidal [TeO3] anions located above every second face of one of the M6 octahedra. The halide X anions are situated in the voids of the ${3}\atop{{\infty}}$ [M3Te2O6]2+ framework. Dependent on the nature of the halogen, the anions show various kinds of occupational disorder which eventually led to a revision of the previous structure model of Ba3Te2O6Cl2. A comparative discussion with other structures of general formula M3Ch2O6X2 (M = divalent metal; Ch = Te, Se; X = Cl, Br) is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号