A mechanistic and kinetic study of the OH.‐initiated oxidation of benzaldehyde is carried out using quantum chemical methods and classical transition state theory. We calculate the rate constant for this reaction within the temperature range of 200–350 K at atmospheric pressure. All possible hydrogen abstraction and OH. addition channels are considered and branching ratios are obtained. Tunneling corrections are taken into account for abstraction channels, assuming unsymmetrical Eckart barriers. The aldehydic abstraction is by far the most important reaction channel within the entire range of temperatures studied, especially at room temperature and lower—the temperatures relevant to atmospheric chemistry. The relative importance of all the other possible channels increases slightly with temperature. Branching ratios show that addition at the ring and abstraction of an ortho hydrogen contribute about 1 % each at about 300 K, while the branching ratio for the main reaction decreases from 99 % at 200 K to 93 % at 350 K. The results are compared with available experimental measurements. 相似文献
Two different mechanisms : Shift 1,2‐isomerization and isomerization via the disproportionation reaction are investigated for aromatic hydrocarbons over acidic mordenite zeolite by using our own n‐layered integrated molecular orbital and molecular mechanics (ONIOM) scheme. The picture shows a schematic energy profile for the isomerization of toluene catalyzed by acidic mordenite.
The ion‐pair SN2 reactions of model systems MnFn?1+CH3Cl (M+=Li+, Na+, K+, and MgCl+; n=0, 1) have been quantum chemically explored by using DFT at the OLYP/6‐31++G(d,p) level. The purpose of this study is threefold: 1) to elucidate how the counterion M+ modifies ion‐pair SN2 reactivity relative to the parent reaction F?+CH3Cl; 2) to determine how this influences stereochemical competition between the backside and frontside attacks; and 3) to examine the effect of solvation on these ion‐pair SN2 pathways. Trends in reactivity are analyzed and explained by using the activation strain model (ASM) of chemical reactivity. The ASM has been extended to treat reactivity in solution. These findings contribute to a more rational design of tailor‐made substitution reactions. 相似文献
The methylation of HgII(SCH3)2 by corrinoid‐based methyl donors proceeds in a concerted manner through a single transition state by transfer of a methyl radical, in contrast to previously proposed reaction mechanisms. This reaction mechanism is a consequence of relativistic effects that lower the energies of the mercury 6p1/2 and 6p3/2 orbitals, making them energetically accessible for chemical bonding. In the absence of spin–orbit coupling, the predicted reaction mechanism is qualitatively different. This is the first example of relativity being decisive for the nature of an observed enzymatic reaction mechanism. 相似文献
The mechanisms of cycloaddition of thioformaldehyde S-methylide and thioacetone S-methylide, as models for an alkyl-substituted ylide, to thioformaldehyde and thioacetone, as well as to ethene as a model for a C=C double bond have been studied by ab initio calculations. Restricted and unrestricted B3LYP/6-31G* calculations were performed for the geometries of ground states, transition structures, and intermediates. Although basis sets with more polarization functions were tested, the 6-31G* basis set was applied throughout. Single-point CASPT2 calculations are reported for analysis of the unsubstituted system. The stabilities of structures with high biradical character seem to be overestimated by DFT methods in comparison to CASPT2. The general trends of the results are independent of the level of theory. Thioformaldehyde adds to thioformaldehyde S-methylide without activation energy, and the activation energies for two-step biradical pathways to 1,3-dithiolane are low. C,S biradicals are more stable than C,C biradicals. The two-step cycloaddition is not competitive with the concerted cycloaddition. Methyl substitution in the 1,3-dipole and the dipolarophile does not change the mechanistic relationships. TSs for the concerted formation of the regioisomeric cycloadducts of thioacetone Smethylide and thioacetone were located. Concerted addition remains the preferred reaction. The reactivity of the C=S double bond is high relative to that of the C=C double bond. 相似文献
The two isoelectronic bipyridyl derivatives, [2,2'-bipyridyl]-3,3'-diamine and [2,2'-bipyridyl]-3,3'-diol, are experimentally known to undergo very different excited-state double-proton-transfer processes, which result in fluorescence quantum yields that differ by four orders of magnitude. Herein, density functional theory (DFT), time-dependent DFT (TDDFT), and complete active space self-consistent field (CASSCF) calculations are used to study the double-proton-transfer processes in the ground and first singlet pi-->pi* excited state. The quantum-chemistry calculations indicate 1) the existence of only one energy minimum in the ground electronic state corresponding to reactants (thus avoiding the possibility of a fast fluorescent relaxation process from the photoproducts region), 2) an endoergic process of the complete double proton transfer, and 3) the presence of a conical intersection in the excited intermediate region of [2,2'-bipyridyl]-3,3'-diamine. These facts explain the very low fluorescence quantum yield in [2,2'-bipyridyl]-3,3'-diamine compared to [2,2'-bipyridyl]-3,3'-diol. 相似文献
A rationalization of stereoselectivity : The mechanisms of proline‐catalyzed and imidazole‐co‐catalyzed intramolecular Baylis–Hillman reactions have been studied by using density functional theory methods. The computational data has allowed us to rationalize the experimental outcome, validating some of the mechanistic steps proposed in the literature, as well as to propose new ones that considerably change and improve our understanding of the full reaction path (see scheme).
Both matched and mismatched diastereoselection have been observed in aldol reactions of a boron enolate of a protected L-erythrulose derivative with several chiral alpha-fluoro and alpha-amino aldehydes. Strict adherence to the Felkin-Anh model for the respective transition structures does not account satisfactorily for all the observed results, as previously observed in the case of alpha-oxygenated aldehydes. In some cases, only the Cornforth model provides a good explanation. The factors that influence this dichotomy are discussed and a general mechanistic model is proposed for aldol reactions with alpha-heteroatom-substituted aldehydes. Additional support for the model was obtained from density functional calculations. 相似文献
In the present study, a selection of basic substitution patterns on benzoyl(trimethyl)germane was investigated using time‐dependent density‐functional theory (TDDFT) to explore the influence on the stability and on the relative order of the lowest excited electronic states. The theoretical results are in agreement with absorption and fluorescence measurements. We show that electron‐withdrawing groups decrease the energetic level of the lowest singlet and triplet state relative to the electron‐pushing systems resulting in red‐shifted radiative transitions (fluorescence). In the first triplet state electron‐withdrawing groups lead to an increased dissociation barrier and a close approach with the singlet ground state before the transition state in the triplet state is reached, favoring radiationless ground‐state recovery. The results are also in good agreement with empirical concepts of organic chemistry, therefore providing simple rules for synthetic strategies towards tuning the excited‐state properties of benzoylgermanes. 相似文献
The experimentally known reduction of carbon monoxide using a 3‐coordinate [Ta(silox)3] (silox=OSi(tBu)3) complex initially forms a ketenylidene [(silox)3Ta? CCO], followed by a dicarbide [(silox)3Ta? CC? Ta(silox)3] structure. The mechanism for this intricate reaction has finally been revealed by using density functional theory, and importantly a likely structure for the previously unknown intermediate [(silox)3Ta? CO]2 has been identified. The analysis of the reaction pathway and the numerous intermediates has also uncovered an interesting pattern that results in CO cleavage, that being scission from a structure of the general form [(silox)3Ta? CnO] in which n is even. When n is odd, cleavage cannot occur. The mechanism has been extended to consider the effect of altering both the metal species and the ligand environment. Specifically, we predict that introducing electron‐rich metals to the right of Ta in the periodic table to create mixed‐metal dinuclear intermediates shows great promise, as does the ligand environment of the Cummins‐style 3‐coordinate amide structure. This latter environment has the added complexity of improved electron donation from amide rotation that can significantly increase the reaction exothermicity. 相似文献
High‐level electronic structure calculations, in combination with Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometric studies, permit the mechanism by which closed‐shell, “naked” [TaO2]+ brings about C?H bond activation of methane to be revealed. These studies also help to understand why the lighter congeners of [MO2]+ (M=V, Nb) are unreactive under ambient conditions. 相似文献