首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang Z  Wu H  Chen J  Zhang J  Yao Y  Chen GQ 《Lab on a chip》2008,8(11):1957-1962
A novel protein purification method was developed using microbial polyhydroxyalkanoates (PHA) granule-associated protein phasin, a pH-inducible self-cleaving intein and PHA nanoparticles. Genes for the target proteins to be produced and purified were fused to genes of intein and phasin, the genes were jointly over-expressed in vivo, such as in E. coli cells in this study. The fused proteins containing target protein, intein and phasin produced by the recombinant E. coli were released together with all other E. coli proteins via a bacterial lysis process. They were then adsorbed in vitro to the surfaces of the hydrophobic polymer nanoparticles incubated with the cell lysates. The nanoparticles attached with the fused proteins were concentrated via centrifugation. Then, the reasonably purified target protein was released by self-cleavage of intein and separated with nanoparticles by a simple centrifugation process. Using this system, enhanced green fluorescent protein (EGFP), maltose binding protein (MBP) and beta-galactosidase were successfully purified in their active forms with reasonable yields, respectively, demonstrating the effectiveness and reliability of this purification system. This method allows the production and purification of high value added proteins in a continuous way with low cost.  相似文献   

2.
The identification and cloning of a red fluorescent protein (DsRed) obtained from Anthozoa corals has provided an alternative to commonly used green fluorescent proteins (GFPs) in bioanalytical and biomedical research. DsRed in tandem with GFPs has enhanced the feasibility of multicolor labeling studies. Properties of DsRed, for example high photostability, red-shifted fluorescence emission, and stability to pH changes have proven valuable in its use as a fluorescent tag in cell-biology applications. DsRed has some limitations, however. Its slow folding and tendency to form tetramers have been a hurdle. Several different mutational studies have been performed on DsRed to overcome these problems. In this paper, applications of DsRed in biosensing, specifically in FRET/BRET assays, whole-cell assays, and in biosensors, is discussed. In the future, construction of DsRed mutants with unique characteristics will further expand its applications in bioanalysis.  相似文献   

3.
We use spectrally‐resolved room temperature single molecule spectroscopy to yield insights into the occurrence and dynamics of spectral forms of single tetramers of DsRed and its variants DsRed2, Fluorescent Timer, DsRed_N42H and AG4. The red‐emitting chromophore in DsRed and all studied variants readily converts into a high quantum efficiency super‐red emitting form. We propose the existence of two super‐red forms of different quantum efficiencies. The observed emission from the green‐emitting chromophore is consistent with bulk spectroscopy. We further observe distinct new spectral forms from each variant, which we attribute to a photoinduced chemical reaction leading to a truncated form of the red‐emitting chromophore analogous to the chromophore in the visible fluorescent protein zFP538. Our results have implications for the accurate interpretation of biological and biochemical processes illuminated by fluorescent proteins as well as for choosing appropriate experimental configurations.  相似文献   

4.
5.
The mechanism of the chromophore maturation in members of the green fluorescent protein (GFP) family such as DsRed and other red fluorescent and chromoproteins was analyzed. The analysis indicates that the red chromophore results from a chemical transformation of the protonated form of the GFP-like chromophore, not from the anionic form, which appears to be a dead-end product. The data suggest a rational strategy to achieve the complete red chromophore maturation utilizing substitutions to favor the formation of the neutral phenol in GFP-like chromophore. Our approach to detect the neutral chromophore form expands the application of fluorescent timer proteins to faster promoter activities and more spectrally distinguishable fluorescent colors. Light sensitivity found in the DsRed neutral form, resulting in its instant transformation to the mature red chromophore, could be exploited to accelerate the fluorescence acquisition.  相似文献   

6.
In red fluorescent proteins such as DsRed, an acylimine is formed from the Phe65-Gln66 linkage in GFP-like immature form, while it shows a cis configuration in its mature state. To date, the relationship between acylimine formation and trans-cis isomerization is still unresolved. We have calculated bond rotation profiles for mature and immature chromophores within the protein using our own n-layered integrated molecular orbital and molecular mechanism (ONIOM) approach. The results suggested that the isomerization is barrierless in acylimine formed in the mature state, suggesting that the acylimine formation precedes the trans-cis isomerization in DsRed chromophores. Further decomposition analysis of electrostatic contributions from individual residues has identified several residues and a specific water molecule which could play key roles in controlling the rate of the trans-cis isomerization of peptide bond in immature GFP-like protein. The results also highlight the importance of Gln66-like of tripeptide motif (chromophore) in the maturation of red fluorescent proteins. In view of the considerable interest in developing red fluorescent proteins for numerous biotechnological applications, these results should be useful for design of novel fluorescent proteins.  相似文献   

7.
A novel combination of CE-based separation techniques was used for the precise fractionation of ionic compounds from impurities. The combination of on-capillary concentration and separation using transient isotachophoresis, with multiple injections and a two-point detection system provided higher efficiency, and accuracy at a microliter-scale injection volume, than when CE was individually used for purification. In this paper, we present successful applications of the CE fractionation techniques for the purification of fluorescein, fluorescein-4-isothiocyanate, two fluorescent metal ion probes, and a fluorescein-modified DNA aptamer. The purity of the isolated fluorescent probes ranged from 95 to 99%. Such high purity could not be achieved using chromatographic purification techniques. With relatively low dilution factors of 6–9, the purified probe solutions were practical for use as purified stock solutions. In addition, the fluorescein-modified DNA aptamer purified by our method was successfully used in a thrombin binding assay. The method developed was useful for the purification of anionic fluorescent reagents to be of ultratrace analytical grade for use with CE-LIF.  相似文献   

8.
Proteins from the family of the green fluorescent protein (GFP) are presently extensively used in molecular and cellular biology. Recent studies suggest that isomerization of the chromophore occurs upon excitation and is involved in nonradiative deactivation. Using Raman spectroscopy, we report on photoinduced cis-trans isomerization in the red fluorescent protein eqFP611 from the sea anemone Entacmaea quadricolor. The crystal structure of eqFP611 shows that the chemical structure of the chromophore, p-hydroxybenzylidene-imidazolinone with an extended -conjugated system, is nearly identical to the chromophore of other red fluorescent proteins such as DsRed and HcRed. However, the chromophore of eqFP611 has a trans configuration whereas the chromophore of DsRed has a cis configuration. Upon irradiation with 532-nm light, the absorption of eqFP611 peaking at 559 nm diminished, and concomitantly a drastic decrease in the quantum yield of fluorescence as well as more complex decay kinetics was observed. Upon irradiation, changes in the Raman spectrum of eqFP611 were observed, and the relative intensities and peak positions of the irradiated eqFP611 showed striking similarity with the peaks in the Raman spectrum of DsRed. These observations are tentatively interpreted as trans-to-cis isomerization of the chromophore taking place upon irradiation together with the opening of new, nonradiative pathways.  相似文献   

9.
He X  Bell AF  Tonge PJ 《Organic letters》2002,4(9):1523-1526
[reaction: see text]. Here we describe the synthesis and spectroscopic characterization of two compounds designed to model the chromophore in DsRed, a red fluorescent protein. Comparison with model green fluorescent protein (GFP) chromophores indicates that the additional conjugation in the DsRed models can account, in part, for the red-shifted absorption and emission properties of DsRed compared to those of GFP. In contrast to the GFP models, the DsRed models are fluorescent with quantum yields of 0.002-0.01 in CHCl3.  相似文献   

10.
Understanding the chromophore maturation process in fluorescent proteins is important for the design of proteins with improved properties. Here, we present the results of electronic structure calculations identifying the nature of a blue intermediate, a key species in the process of the red chromophore formation in DsRed, TagRFP, fluorescent timers, and PAmCherry. The chromophore of the blue intermediate has a structure in which the π-system of the imidazole ring is extended by the acylimine bond, which can be represented by the model N-[(5-hydroxy-1H-imidazole-2yl)methylidene]acetamide (HIMA) compound. Ab initio and QM/MM calculations of the isolated model and protein-bound (mTagBFP) chromophores identify the anionic form of HIMA as the only structure that has absorption that is consistent with the experiment and is stable in the protein binding pocket. The anion and zwitterion are the only protonation forms of HIMA whose absorption (421 and 414 nm, or 2.95 and 3.00 eV) matches the experimental spectrum of the blue form in DsRed (the absorption maximum is 408 nm or 3.04 eV) and mTagBFP (400 nm or 3.10 eV). The QM/MM optimization of the protein-bound anionic form results in a structure that is close to the X-ray one, whereas the zwitterionic chromophore is unstable in the protein binding pocket and undergoes prompt proton transfer. The computed excitation energy of the protein-bound anionic form of the mTagBFP-like chromophore (3.04 eV) agrees with the experimental absorption spectrum of the protein. The DsRed-like chromophore formation in red fluorescent proteins is revisited on the basis of ab initio results and verified by directed mutagenesis revealing a key role of the amino acid residue 70, which is the second after the chromophore tripeptide, in the formation process.  相似文献   

11.

Background

Within the family of green fluorescent protein (GFP) homologs, one can mark two main groups, specifically, fluorescent proteins (FPs) and non-fluorescent or chromoproteins (CPs). Structural background of differences between FPs and CPs are poorly understood to date.

Results

Here, we applied site-directed and random mutagenesis in order to to transform CP into FP and vice versa. A purple chromoprotein asCP (asFP595) from Anemonia sulcata and a red fluorescent protein DsRed from Discosoma sp. were selected as representatives of CPs and FPs, respectively. For asCP, some substitutions at positions 148 and 165 (numbering in accordance to GFP) were found to dramatically increase quantum yield of red fluorescence. For DsRed, substitutions at positions 148, 165, 167, and 203 significantly decreased fluorescence intensity, so that the spectral characteristics of these mutants became more close to those of CPs. Finally, a practically non-fluorescent mutant DsRed-NF was generated. This mutant carried four amino acid substitutions, specifically, S148C, I165N, K167M, and S203A. DsRed-NF possessed a high extinction coefficient and an extremely low quantum yield (< 0.001). These spectral characteristics allow one to regard DsRed-NF as a true chromoprotein.

Conclusions

We located a novel point in asCP sequence (position 165) mutations at which can result in red fluorescence appearance. Probably, this finding could be applied onto other CPs to generate red and far-red fluorescent mutants. A possibility to transform an FP into CP was demonstrated. Key role of residues adjacent to chromophore's phenolic ring in fluorescent/non-fluorescent states determination was revealed.  相似文献   

12.
Nanofibers featuring functional nanoassemblies show great promise as enabling constituents for a diverse range of applications in areas such as tissue engineering, sensing, optoelectronics, and nanophotonics due to their controlled organization and architecture. An infusion gyration method is reported that enables the production of nanofibers with inherent biological functions by simply adjusting the flow rate of a polymer solution. Sufficient polymer chain entanglement is obtained at Berry number > 1.6 to make bead‐free fibers integrated with gold nanoparticles and proteins, in the diameter range of 117–216 nm. Integration of gold nanoparticles into the nanofiber assembly is followed using a gold‐binding peptide tag genetically conjugated to red fluorescence protein (DsRed). Fluorescence microscopy analysis corroborated with Fourier transform infrared spectroscopy (FTIR) data confirms the integration of the engineered red fluorescence protein with the nanofibers. The gold nanoparticle decorated nanofibers having red fluorescence protein as an integral part keep their biological functionality including copper‐induced fluorescence quenching of the DsRed protein due to its selective Cu+2 binding. Thus, coupling the infusion gyration method in this way offers a simple nanoscale assembly approach to integrate a diverse repertoire of protein functionalities into nanofibers to generate biohybrid materials for imaging, sensing, and biomaterial applications.

  相似文献   


13.
Vibrational spectra of red fluorescent protein DsRed have been studied for the first time by polarization-sensitive multiplex coherent anti-Stokes Raman scattering at two excitation wavelengths, 545 and 583 nm, in resonance with the absorption bands of the immature "green" and mature "red" protein chromophores. Overall vibrational patterns of both DsRed chromophores were found to be similar to each other and to differ from that of S65T-GFP at pH8. The combined analysis of our CARS data and published structural information suggest that both "green" and "red" DsRed species possess an extended chromophore structure. Consequently, our data suggest that pi-bonding system extension during isomerization around the cis peptide bond between Phe 65 and Gln 66 is a necessary but not sufficient step in DsRed chromophore maturation.  相似文献   

14.
A simple, low-cost, and scalable protein purification method was developed by using a biodegradable regenerated amorphous cellulose (RAC) with a binding capacity of up to 365 mg protein per gram of RAC. The recombinant protein with a cellulose-binding module (CBM) tag can be specifically adsorbed by RAC. In order to avoid using costly protease and simplify purification process, a self-cleavage intein was introduced between CBM and target protein. The cleaved target protein can be liberated from the surface of RAC by intein self-cleavage occurring through a pH change from 8.0 to 6.5. Four recombinant proteins (green fluorescence protein, phosphoglucomutase, cellobiose phosphorylase, and glucan phosphorylase) have been purified successfully.  相似文献   

15.
Mass spectrometry-based identification of the components of affinity purified protein complexes after polyacrylamide gel electrophoresis (PAGE) and in-gel digest has become very popular for the detection of novel protein interactions. As an alternative, the entire protein complex can be subjected to proteolytic cleavage followed by chromatographic separation of the peptides. Based on our earlier report of a method using affinity tag-mediated purification of cysteine-containing peptides to analyse proteins present in an affinity purification of the CD4/lck receptor complex, we here evaluated the use of one-dimensional polyacrylamide gel electrophoresis for analysis of the same receptor complex purification. Using electrospray and tandem mass spectrometry analyses of tryptic peptides from in-gel digested proteins we identified the components of the CD4 receptor complex along with 23 other proteins that were all likely to be non-specifically binding proteins and mainly different from the proteins detected in our previous study. We compare the alternative strategy with the affinity tag-based method that we described earlier and show that the PAGE-based method enables more proteins to be identified. We also evaluated the use of a more stringent lysis buffer for the CD4 purification to minimise non-specific binding and identified 52 proteins along with CD4 in three independent experiments suggesting that the choice of lysis buffer had no significant effect on the extent of non-specific binding. Non-specific binding was inconsistent and involved various types of proteins underlining the importance of reproducibility and control experiments in proteomic studies.  相似文献   

16.
Affinity selection-mass spectrometry (AS-MS) is a sensitive technology for identifying small molecules that bind to target proteins, and assays enabled by AS-MS can be used to delineate relative binding affinities of ligands for proteins. 'Indirect' AS-MS assays employ size-exclusion techniques to separate target-ligand complexes from unbound ligands, and target-associated ligands are then specifically detected by liquid chromatography mass spectrometry. We report how indirect AS-MS binding assays with known reference control compounds were used as guideposts for development of an optimized purification method for CXCR4, a G-protein coupled chemokine receptor, for which we sought novel antagonists. The CXCR4 purification method that was developed was amenable to scale-up and enabled the screening of purified recombinant human CXCR4 against a large combinatorial library of small molecules by high throughput indirect AS-MS. The screen resulted in the discovery of new ligands that competed off binding of reference compounds to CXCR4 in AS-MS binding assays and that antagonized SDF1α-triggered responses and CXCR4-mediated HIV1 viral uptake in cell-based assays. This report provides a methodological paradigm whereby indirect AS-MS-based ligand binding assays may be used to guide optimal integral membrane protein purification methods that enable downstream affinity selection-based applications such as high throughput AS-MS screens.  相似文献   

17.
A method for purification of the pregnancy zone protein (PZP) by affinity chromatography was developed. A monospecific immunoglobulin fraction, covalently coupled to Sepharose 4B, was used as binding agent and the elution conditions for PZP are described. The purified protein was shown to have identical properties compared to native PZP with regard to molecular weight, immunodiffusion precipitation and immunosuppressive activity.  相似文献   

18.
The red fluorescent protein DsRed displays a two-photon excitation band around 760 nm which is not accompanied by any feature in the corresponding one-photon spectral region (380 nm). By means of time-dependent density functional theory, we are able to explain such an effect, as arising from an electronic excitation of the DsRed chromophore with ability to couple with a charge-transfer state, through an effective two-photon absorption channel.  相似文献   

19.
Proteins conjugated to neutral biopolymers are of keen interest to the food and pharmaceutical industries. Conjugated proteins are larger and more charge shielded than un-reacted proteins, making purification difficult using conventional beaded chromatographic supports because of slow mass transfer rates, weak binding, and viscous solutions. Past methods developed for pharmaceuticals are unsuitable for foods. In this work, a food-grade whey protein-dextran conjugate was purified from a feed solution also containing un-reacted protein and dextran using either a column packed with 800 mL of a beaded support that was specifically designed for purification of conjugated proteins or an 8 mL tube monolith. The monolith gave a similar dynamic binding capacity as the beaded support (4-6 g/L), at a 42-fold greater mass productivity, and 48-fold higher flow rate, albeit at somewhat lower conjugate purity. Performance of the monolith did not depend on flow rate. In conclusion, monoliths were found to be well suited for the purification of whey protein-dextran conjugates.  相似文献   

20.
Affinity purification of recombinant proteins is an essential technique in biotechnology. However, current affinity purification methods are very cost-intensive, and this imposes limits on versatile use of affinity purification for obtaining purified proteins for a variety of applications. To overcome this problem, we developed a new affinity purification system which we call CSAP (chitin- and streptavidin-mediated affinity purification) for low-cost purification of Strep-tag II fusion proteins. The CSAP system is designed to utilize commercially available chitin powder as a chromatography matrix, thereby significantly improving the cost-efficiency of protein affinity purification. We investigated the CSAP system for protein screening in 96-well format as a demonstration. Through the screening of 96 types of purified hemoproteins, several proteins capable of the catalytic diastereodivergent synthesis of cyclopropanes were identified as candidates for an abiotic carbene transfer reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号