首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 503 毫秒
1.
The difficulties and clumsiness of problems of calculating the heat transfer distribution over the surface of a body in a three-dimensional flow are well known. It is shown that this problem can be considerably simplified where the influence of the three-dimensionality of the flow, which in certain applications it is important to take into account, is only weak. In this case the three-dimensional problem can be reduced to a set of two-dimensional problems along the lines of meridional sections of the body. This has been demonstrated in detail with reference to the method of effective length or local similarity, which is widely used in engineering practice and is particularly justified in the the case of turbulent heat transfer law. However, in the three-dimensional case it is complicated by the need to calculate the distribution of the streamlines over the surface of the body [1–4]. In the presence of slight asymmetry of the flow the problem can be substantially simplified, mainly as a result of the demonstrated possibility of replacing (with quadratic accuracy) the streamlines by the lines of meridional sections. The possibility of an independent solution of the exact boundary layer equations along each meridional plane is demonstrated for the above-mentioned approximation (rule of meridional sections).Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 67–73, May–June, 1986.  相似文献   

2.
An approximate method of determining the heat transfer and friction stress in three-dimensional flow problems using the two-dimensional and one-dimensional solutions is proposed. This method is applicable over a wide range of Reynolds numbers — from low to high. On the basis of a theoretical analysis of the approximate analytic solution of the equations of a three-dimensional viscous shock layer it is shown that the problem of determining the heat flux in the neighborhood of the plane of symmetry of bodies inclined to the flow at an angle of attack can be reduced, firstly, to the problem of determining that quantity for an axisymmetric body and, secondly, to the problem of determining the heat transfer to an axisymmetric stagnation point. On the basis of an analysis of the results of a numerical solution of the problem it is shown that corresponding analogs can also be used for the friction stress. The accuracy of the similarity relations established is estimated by solving the problem by a finite-difference method. A similarity relation of the same kind was previously obtained in [1] for a double-curvature stagnation point.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 117–122, January–February, 1990.  相似文献   

3.
A method of solving three-dimensional flow problems with the aid of two-dimensional solutions, which can be used for any Reynolds numbers, is proposed. The method is based on the use of similarity relations obtained in the theoretical analysis of the approximate analytic solution of the equations of a three-dimensional viscous shock layer. These relations express the heat flux and the friction stress on the lateral surface of a three-dimensional body in terms of the values on the surface of an axisymmetric body. The accuracy is estimated by comparing the results with those of a numerical finite-difference calculation of the flow past bodies of various shapes. Similar similarity relations were previously obtained in [1] for the plane of symmetry of a blunt body.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 111–118, November–December, 1991.The authors are grateful to G. A. Tirskii for his interest in their work.  相似文献   

4.
The calculation of supersonic flow past three-dimensional bodies and wings presents an extremely complicated problem, whose solution is made still more difficult in the case of a search for optimum aerodynamic shapes. These difficulties made it necessary to simplify the variational problems and to use the simplest dependences, such as, for example, the Newton formula [1–3]. But even in such a formulation it is only possible to obtain an analytic solution if there are stringent constraints on the thickness of the body, and this reduces the three-dimensional problem for the shape of a wing to a two-dimensional problem for the shape of a longitudinal profile. The use of more complicated flow models requires the restriction of the class of considered configurations. In particular, paper [4] shows that at hypersonic flight velocities a wing whose windward surface is concave can have the maximum lift-drag ratio. The problem of a V-shaped wing of maximum lift-drag ratio is also of interest in the supersonic velocity range, where the results of the linear theory of [5] or the approximate dependences of the type of [6] can be used.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 128–133, May–June, 1986.We note in conclusion that this analysis is valid for those flow regimes for which there are no internal shock waves in the shock layer near the windward side of the wing.  相似文献   

5.
The authors consider problems connected with stability [1–3] and the nonlinear development of perturbations in a plane mixing layer [4–7]. Attention is principally given to the problem of the nonlinear interaction of two-dimensional and three-dimensional perturbations [6, 7], and also to developing the corresponding method of numerical analysis based on the application to problems in the theory of hydrodynamic stability of the Bubnov—Galerkin method [8–14].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhldkosti i Gaza, No. 1, pp. 10–18, January–February, 1985.  相似文献   

6.
The laminar-turbulent transition zone is investigated for a broad class of jet flows. The problem is considered in terms of the inviscid model. The solution of the initial-boundary value problem for three-dimensional unsteady Euler equations is found by the Bubnov-Galerkin method using the generalized Rayleigh approach [1–4]. The occurrence, subsequent nonlinear evolution and interaction of two-dimensional wave disturbances are studied, together with their secondary instability with respect to three-dimensional disturbances.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 8–19, September–October, 1985.  相似文献   

7.
V. V. Lunev 《Fluid Dynamics》1977,12(3):421-427
The change of form of a body due to disintegration (ablation) during aerodynamic or other types of heating is described by an equation (we shall call it the ablation equation); the type of this equation is largely determined by the law of external heating. Such problems in different particular formulations have been investigated in [1–4] and others. Within the realm of simplest assumptions (methods of local similarity for the distribution of convective heat fluxes, absence of preheating) this equation is a first-order integrodifferential equation with significantly nonlinear properties. Below, its characteristic properties are described for two-dimensional problems and a solution is obtained in the neighborhood of the corner points of an initial nonsmooth profile, for which a particular example may be (as will be shown below) a body of stationary form that remains unchanged during the ablation process. It is shown that this solution may belong to one of three types: of these, one, which is discontinuous, retains the corner point, the second smears it, and the third is of mixed character.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 95–102, May–June, 1977.  相似文献   

8.
A useful means of constructing approximate flow models is the hydraulic (for two-dimensional problems quasi-one-dimensional) approach, based on averaging the initial nonuniform flows over some direction or cross section [1]. In this case, at the expense of a rougher model it is possible to reduce the dimensionality of the problem. Here, this approach is extended to unsteady two-dimensional gas-dynamic processes; certain problems (flow around a cone or a blunt body, jet flows) are considered in the framework of the quasi-one-dimensional model obtained, and results are compared with the solutions of the corresponding two-dimensional problems.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 136–143, March–April, 1989.  相似文献   

9.
The problem of the development of a laminar jet of viscous incompressible fluid with zero excess impulse (the wake of a hydrodynamic motor) was investigated for the first time by Birkhoff and Zarantonello [1], who found a self-similar solution to the dynamical problem for the case of a two-dimensional laminar wake. The problem of the development of turbulent wakes of hydrodynamic motors in the near and far flow regions was solved by Ginevskii [2] on the basis of an integral method. In the present paper, the method of asymptotic expansions is used on the basis of the boundary layer equations to solve nonself-similar problems of the development of laminar jet flows of a viscous incompressible fluid with zero excess impulse. The obtained solution takes into account the influence of the details of the source (finite size of the body and its geometry) and the value of the Prandtl number on the velocity and temperature distribution. In the case of a laminar axi-symmetric wake, a self-similar solution is obtained to the thermal problem, the solution being valid in a wide range of Prandtl numbers.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 27–33, May–June, 1984.  相似文献   

10.
The problem of supersonic flow around bodies close to a wedge was first discussed in the two-dimensional case in [1]. The shock wave was assumed to be attached, and the flow behind it to be supersonic; taking this into account, the angle of the wedge was assumed to be arbitrary. The surface of the body was also arbitrary, provided that it was close to the surface of the wedge. In solution of the three-dimensional problem, there was first considered flow around two supporting surfaces with only slightly different angles of attack [2], and then around a delta wing [3, 4]. In all these articles, the Lighthill method was used to solve the Hilbert boundary-value problem [5, 6]. A whole class of surfaces of bodies with arbitrary edges, under the assumption that the surface of the body was cylindrical, with generatrices directed along the flow lines of the unperturbed flow behind an oblique shock wave, was discussed in [7]. In the present work, the problem is regarded for a broad class of surfaces of bodies, using a new method which generalizes the results of [8].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 109–117, July–August, 1974.The author thanks G. G. Chernyi for his direction of the work.  相似文献   

11.
We consider the problem of finding the shape of two-dimensional and axisymmetric bodies having minimal wave drag in a supersonic perfect gas flow. The solution is sought among bodies having attached shock waves. The limitations on the body contour are arbitrary: these constraints may be body dimensions, volume, area, etc. Such problems with arbitrary isoperimetric conditions may be solved by the method suggested in [1, 2]. This method involves the use of the exact equations of gasdynamics which describe the flow as additional constraints. This method was developed further in [3–6] in the solution of several problems.The author wishes to thank V. M. Borisov, A. N. Kraiko and Yu. D. Shmyglevskii for their interest in this study.  相似文献   

12.
A solution is given for the problem of flow past a cascade on an axisymmetric stream surface in a layer of variable thickness, which is a component part of the approximate solution of the three-dimensional problem for a three-dimensional cascade. Generalized analytic functions are used to obtain the integral equation for the potential function, which is solved via iteration method by reduction to a system of linear algebraic equations. An algorithm and a program for the Minsk-2 computer are formulated. The precision of the algorithm is evaluated and results are presented of the calculation of an example cascade.In the formulation of [1, 3] the problem of flow past a three-dimensional turbomachine cascade is reduced approximately to the joint solution of two-dimensional problems of the averaged axisymmetric flow and the flow on an axisymmetric stream surface in an elementary layer of variable thickness.In the following we solve the second problem for an arbitrary cascade with finite thickness rotating with constant angular velocity in ideal fluid flow: the solution is carried out on a Minsk-2 computer.Many studies have been devoted to this problem. A method for solving the direct problem for a cascade of flat plates in a hyperbolic layer was presented in [2]. Methods were developed in [1, 3] for constructing the flow for the case of a channel with variable thickness; these methods are approximately applicable for dense cascades but yield considerable error for small-load turbomachine cascades. The solution developed in [4], somewhat reminiscent of that of [2], is applicable for thin, slightly curved profiles in a layer with monotonically varying thickness. A solution has been given for a circular cascade for layers varying logarithmically [5] and linearly [6]. Approximate methods for slightly curved profiles in a monotonically varying layer with account for layer variability only in the discharge component were examined in [7–9]. A solution is given in [10] for an arbitrary layer by means of the relaxation method, which yields a roughly approximate flow pattern. The general solution of the problem by means of potential theory and the method of singularities presented in [11] is in error because of neglect of the crossflow through the skeletal line. The computer solution of [12] contains an unassessed error for the calculations in an arbitrary layer. The finite difference method is used in [13] to solve the differential equation of flow, which is illustrated by numerical examples for monotonie layers of axial turbomachines. The numerical solution of [13] is very complex.The solution presented below is found in the general formulation with respect to the geometric parameters of the cascade and the axisymmetric surface and also in terms of the layer thickness variation law.The numerical solution requires about 15 minutes of machine time on the Minsk-2 computer.  相似文献   

13.
A study is made of hypersonic three-dimensional flow of a viscous gas past blunt bodies at low and moderate Reynolds numbers with allowance for the effects of slip and a jump of the temperature across the surface. The equations of the three-dimensional viscous shock layer are solved by an integral method of successive approximation and a finite-difference method in the neighborhood of the stagnation point. In the first approximation of the method an analytic solution to the problem is found. Analysis of the obtained solution leads to the proposal of a simple formula by means of which the calculation of the heat flux to a three-dimensional stagnation point is reduced to the calculation of the heat flux to an axisymmetric stagnation point. A formula for the relative heat flux obtained by generalizing Cheng's well-known formula [1] is given. The accuracy and range of applicability of the obtained expressions are estimated by comparing the analytic and numerical solutions. Three-dimensional problems of the theory of a supersonic viscous shock layer at small Reynolds numbers were considered earlier in [2–5] in a similar formulation but without allowance for the effects of slip.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 143–150, March–April, 1988.  相似文献   

14.
A method of estimating the critical cavitation number for marine propeller blades is proposed. This method is based on the reduction of the three-dimensional unsteady problem to the three-dimensional steady problem and a series of two-dimensional unsteady problems.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.1, pp. 78–85, January–February, 1993.The authors are grateful to S. V. Kaprantsev for assisting with the experiments.  相似文献   

15.
A number of methods have been proposed in recent years for calculating the combined flows of immiscible and miscible liquids in strata to systems of boreholes. We propose a method which can naturally be called the zonal linearization method [1]. It is more compact than the usual finite-difference method and has high accuracy, in particular, in the neighborhood of a borehole, since it is closely similar to the method of characteristics. The method can be applied to both continuous and discontinuous flows and in principle makes it possible to investigate the formation and breakdown of discontinuities. As distinct from the method of characteristics, it is well suited to programming and implementation on a computer, and it also makes it possible to obtain an approximate analytic solution of the problem in many cases and to estimate the accuracy of the solution. The method is based on the zonal linearization of the equation for mass conservation in the total flow between chosen surfaces or contour lines (lines of equal saturation or concentration). Determination of the dynamics of the contour surfaces leads to a Cauchy problem for a system of integrodifferential equations involving partial derivatives. The zonal linearization method is a development of the scheme described in [2–4], and the method of solving the Cauchy problem is a generalization of the methods described in [4–13]. The essence of the method and its convergence are illustrated by means of two-dimensional problems in two-phase filtration.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 66–80, July–August, 1973.  相似文献   

16.
Three-dimensional supersonic ideal-gas flow past axisymmetric finned bodies rotating about the longitudinal axis is considered. A calculation method based on the numerical solution of the Euler equations by finite differences is described. The effect of the rotation of the body is taken into account within the framework of the curvature hypothesis [1], which provided that the dimensionless rate of rotation is small reduces the solution of the unsteady three-dimensional problem of supersonic flow past a rotating body to the solution of the steady-state problem of flow past a nonrotating body with specially curved fins. The problem of the rotation of a finned body in a free stream is solved.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 109–114, July–August, 1988.  相似文献   

17.
The exact solution of the problem of determining the optimal body shape for which the total thermal flux will be minimal for high supersonic flow about the body involves both computational and theoretical difficulties. Therefore, at the present time wide use is made of the inverse method, based on comparing the thermal fluxes for bodies of various specified form [1, 2]. The results of such calculations cannot always replace the solution of the direct variational problem. Therefore it is advisable to consider the direct variational problem of determining the form of a body with minimal thermal flux by using the approximate Newton formula for finding the gasdynamic parameters at the edge of the boundary layer. This approach has been used in finding the form of the body of minimal drag in an ideal fluid [3–5] arid with account for friction [6], and also for determining the form of a thin two-dimensional profile with minimal thermal flux for given aerodynamic characteristics [7].  相似文献   

18.
In this paper we justify a two-dimensional evolution and eigenvalue model for micropolar plates starting from three-dimensional linearly micropolar elasticity. A small parameter representing the thickness of the plate-like body is introduced in the problem. The asymptotics of the evolution and eigenvalue problems is then developed as this small parameter tends to zero. First the appropriate convergences of the eigenpairs of the three-dimensional problem to the eigenpairs of the two-dimensional eigenvalue problem for micropolar plates is shown. Then these convergences are used in the Fourier method to obtain the convergences of the solution of the three-dimensional evolution problem to the solution of the two-dimensional evolution plate model.   相似文献   

19.
The area rule, which is well known for wave resistance [1, 2], is generalized to the heating of three-dimensional bodies by flows which depend locally on the angle of attack. Calculations are made for triaxial ellipsoids with different ratios of the semiaxes, and the limits of applicability of the rule are found. The problem of determining the ablation of a three-dimensional body that changes its shape in a heat flow is solved. It is shown that the area rule also holds for a change of mass of three-dimensional bodies, and expressions are given for calculating the ablation.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 71–76, March–April, 1979.We are grateful to G. G. Chernyi and G. A. Tirskii for discussing the results.  相似文献   

20.
The flows around complex three-dimensional bodies by an ideal fluid are computed by methods [1–3] using approximation of the surface by a set of plane elements. A layer of surface singularities, whose intensity is found by solving a system of linear algebraic equations of very high order, is distributed continuously over each element. Evaluation of the system coefficients and its solution require significant machine time expenditures on powerful electronic computers. If in the method of [2] the total system of equations is separated successfully into several subsystems by simplifications and an approximate solution of the problem is obtained more rapidly than by the method in [1], then the same author practically used the method in [1] to design specific fuselages in [3]. A method [4] developed for a fuselage is expanded in this paper to design a wing-fuselage combination. This method turns out to be less tedious, without being inferior in accuracy, by being different from the method in [1] in the means of solving the fundamental integral equation.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 110–115, May–June, 1977.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号