首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Attempts to prepare heterobimetallic complexes in which 3d and uranium magnetic ions are associated by means of the Schiff bases H(2)L(i) derived from 2-hydroxybenzaldehyde or 2-hydroxy-3-methoxybenzaldehyde were unsuccessful because of ligand transfer reactions between [ML(i)] (M=Co, Ni, Cu) and UCl(4) that led to the mononuclear Schiff base complexes of uranium [UL(i)Cl(2)]. The crystal structure of [UL(3)Cl(2)(py)(2)] [L(3)=N,N'-bis(3-methoxysalicylidene)-ethylenediamine; py=pyridine] was determined. The hexadentate Schiff base ligand N,N'-bis(3-hydroxysalicylidene)-2,2-dimethyl-1,3-propanediamine (L) was useful for the synthesis of novel trinuclear complexes of the general formula [[ML(py)](2)U] (M=Co, Ni, Zn) or [[CuL(py)]M'[CuL]] (M'=U, Th, Zr) by reaction of [M(H(2)L)] with [M'(acac)(4)] (acac=MeCOCHCOMe). The crystal structures of the Co(2)U, Ni(2)U, Zn(2)U, Cu(2)U, and Cu(2)Th complexes show that the two ML fragments are orthogonal, being linked to the central actinide ion by the two pairs of oxygen atoms of the Schiff base ligand. In each compound, the UO(8) core exhibits the same dodecahedral geometry, and the three metals are linear. The magnetic study indicated that the two Cu(2+) ions are not coupled in the Cu(2)Zr and Cu(2)Th compounds. The magnetic behavior of the Co(2)U, Ni(2)U, and Cu(2)U complexes was compared with that of the Zn(2)U derivative, in which the paramagnetic 3d ion was replaced with the diamagnetic Zn(2+) ion. A weak antiferromagnetic coupling was observed between the Ni(2+) and the U(4+) ions, while a ferromagnetic interaction was revealed between the Cu(2+) and U(4+) ions.  相似文献   

2.
The reaction of [M(H(2)L(i))] (M = Cu, Zn) and U(acac)(4) in refluxing pyridine produced the trinuclear complexes [[ML(i)(py)(x)](2)U] [L(i) = N,N'-bis(3-hydroxysalicylidene)-R, R = 1,2-ethanediamine (i = 1), 2-methyl-1,2-propanediamine (i = 2), 1,2-cyclohexanediamine (i = 3), 1,2-phenylenediamine (i = 4), 4,5-dimethyl-1,2-phenylenediamine (i = 5), 1,3-propanediamine (i = 6), 2,2-dimethyl-1,3-propanediamine (i = 7), 2-amino-benzylamine (i = 8), or 1,4-butanediamine (i = 9); x = 0 or 1]. The crystal structures show that the central U(IV) ion adopts the same dodecahedral configuration in all of these compounds, while the Cu(II) ion coordination geometry and the Cu...U distance vary with the length of the diimino chain of the Schiff base ligand L(i). These geometrical parameters have a major influence on the magnetic properties of the complexes. For the smallest Cu...U distances (i = 1-5), the Cu-U coupling is antiferromagnetic and weak antiferromagnetic interactions are present between the Cu(II) ions, while for the largest Cu...U distances (i = 6-9), the Cu-U coupling is ferromagnetic and no interaction is observed between the Cu(II) ions. The magnetic behavior of the [[CuL(i)](2)Th] compounds (i = 1, 2), in which the Th(IV) ion is diamagnetic, confirms the presence of weak intramolecular antiferromagnetic coupling between the Cu(II) ions.  相似文献   

3.
Treatment of U(acac)4 with the hexadentate Schiff base H2L(i) gave the [UL(i)2] complexes 1-4 [H2L1=N,N'-bis(3-methoxysalicylidene)-2-methyl-1,2-propanediamine, H2L2=N,N'-bis(3-methoxysalicylidene)-1,2-phenylenediamine, H2L3=N,N'-bis(3-methoxysalicylidene)-2-aminobenzylamine and H2L4=N,N'-bis(3-methoxysalicylidene)-2,2-dimethyl-1,3-propanediamine for 1-4, respectively]. The [U(L(i))(acac)2] compounds could not be isolated because of their ready disproportionation into [UL(i)2] and U(acac)4. Compounds 2 and 4 adopt a meridional configuration in the solid state and in solution, while exists in solution as the two equilibrating meridional and sandwich isomers and crystallizes in the meridional isomeric form. Reaction of U(acac)4 with H4L5 afforded the expected compound [U(H2L5)(acac)2] (5) [H4L5=N,N'-bis(3-hydroxysalicylidene)-2-methyl-1,2-propanediamine] but, in the presence of H4L6 and H4L7, U(acac)4 was transformed in a serendipitous and reproducible manner into the tri- and tetranuclear U(IV) complexes [U3(L6)(HL6)2(acac)2] (6) and [U4(HL7)4(H2L7)2] (7) [H4L6=N,N'-bis(3-hydroxysalicylidene)-1,2-phenylenediamine and H4L7=N,N'-bis(3-hydroxysalicylidene)-2-aminobenzylamine]. The crystal structures of 6.3thf and 7.5thf show the assembling role of the Schiff-base ligands.  相似文献   

4.
Treatment of UCl4 with the hexadentate Schiff bases H2Li in thf gave the expected [ULiCl2(thf)] complexes [H2Li=N,N'-bis(3-methoxysalicylidene)-R and R = 2,2-dimethyl-1,3-propanediamine (i= 1), R = 1,3-propanediamine (i= 2), R = 2-amino-benzylamine (i= 3), R = 2-methyl-1,2-propanediamine (i= 4), R = 1,2-phenylenediamine (i= 5)]. The crystal structure of [UL4Cl2(thf)] (4) shows the metal in a quite perfect pentagonal bipyramidal configuration, with the two Cl atoms in apical positions. Reaction of UCl4 with H4Li in pyridine did not afford the mononuclear products [U(H2Li)Cl2(py)x] but gave instead polynuclear complexes [H4Li=N,N'-bis(3-hydroxysalicylidene)-R and R = 1,3-propanediamine (i= 6), R = 2-amino-benzylamine (i= 7) or R = 2-methyl-1,2-propanediamine (i= 8)]. In the presence of H4L6 and H4L7 in pyridine, UCl4 was transformed in a serendipitous and reproducible manner into the tetranuclear U(iv) complexes [Hpy]2[U4(L6)2(H2L6)2Cl6] (6a) and [Hpy]2[U4(L7)2(H2L7)2Cl6][U4(L7)2(H2L7)2Cl4(py)2] (7), respectively. Treatment of UCl4 with [Zn(H2L6)] led to the formation of the neutral compound [U4(L6)2(H2L6)2Cl4(py)2] (6b). The hexanuclear complex [Hpy]2[U6(L8)4Cl10(py)4] (8) was obtained by reaction of UCl4 and H4L8. The centrosymmetric crystal structures of 6a.2HpyCl.2py, 6b.6py, 7.16py and 8.6py illustrate the potential of Schiff bases as associating ligands for the design of polynuclear assemblies.  相似文献   

5.
Two new trinuclear hetero-metallic copper(ii)-zinc(ii) complexes [(CuL)(2)Zn(N(3))(2)] ( and ) have been synthesized using [CuL] as a so-called "metalloligand" (where H(2)L = N,N'-bis(salicylidene)-1,3-propanediamine) and structurally characterized. Complexes and have the same molecular formula but crystallize in different crystal systems (triclinic for and monoclinic for ) with space group P1[combining macron] for and P2(1)/c for . is an angular trinuclear species, in which two terminal four-coordinate square planar "metalloligand" [CuL] are coordinated to a central Zn(ii) through double phenoxido bridges. The Zn(ii) is in a six-coordinate distorted octahedral environment being bonded additionally to two mutually cis nitrogen atoms of terminal azide ions. In complex , in addition to the double phenoxido bridge, the two terminal Cu(ii) ions are linked to the central Zn(ii) via a μ(-l,l) azido bridge giving rise to a square pyramidal environment around the Cu(ii) ions and consequently the structure becomes linear. These two species can be considered as "linear-bent" isomers. EPR spectra and ESI mass spectra show that the two isomers are identical in solution. The DFT calculation reveals that the energy of is 7.06 kcal mol(-1) higher than that of . The existence of both isomers in the solid state suggests that crystal packing interactions in are more efficient and probably compensate for the difference in energy.  相似文献   

6.
Reaction of [Ru (VI)(N)(L (1))(MeOH)] (+) (L (1) = N, N'-bis(salicylidene)- o-cyclohexylenediamine dianion) with excess pyridine in CH 3CN produces [Ru (III)(L (1))(py) 2] (+) and N 2. The proposed mechanism involves initial equilibrium formation of [Ru (VI)(N)(L (1))(py)] (+), which undergoes rapid N...N coupling to produce [(py)(L (1))Ru (III) N N-Ru (III)(L (1))(py)] (2+); this is followed by pyridine substituion to give the final product. This ligand-induced N...N coupling of Ru (VI)N is utilized in the preparation of a series of new ruthenium(III) salen complexes, [Ru (III)(L)(X) 2] (+/-) (L = salen ligand; X = H 2O, 1-MeIm, py, Me 2SO, PhNH 2, ( t )BuNH 2, Cl (-) or CN (-)). The structures of [Ru (III)(L (1))(NH 2Ph) 2](PF 6) ( 6), K[Ru (III)(L (1))(CN) 2] ( 9), [Ru (III)(L (2))(NCCH 3) 2][Au (I)(CN) 2] ( 11) (L (2) = N, N'-bis(salicylidene)- o-phenylenediamine dianion) and [N ( n )Bu 4][Ru (III)(L (3))Cl 2] ( 12) (L (3) = N, N'-bis(salicylidene)ethylenediamine dianion) have been determined by X-ray crystallography.  相似文献   

7.
Nanda PK  Aromí G  Ray D 《Inorganic chemistry》2006,45(8):3143-3145
The cluster [NaCu4L2(N3)2](ClO4) [1; H3L is 2-(2'-hydroxyphenyl)-1,3-bis[3'-aza-4'-(2'-hydroxyphenyl)prop-4'-en-1'-yl]-1,3-imidazolidine] has been synthesized and structurally characterized. Complex 1 is formed by the template assembly of two [Cu2L(N3)] neutral fragments through their weak oxophilic interactions with a central Na+ cation as observed in metallacrowns. The cluster exhibits a combination of ferro- and antiferromagnetic interactions. End-on N3- bridging of copper ions within the [Cu(II)2] units facilitates stabilization of S = 1 magnetic subunits that mutually cancel via antiferromagnetic coupling as mediated by the O...Na+...O bridges.  相似文献   

8.
New heterospin complexes have been obtained by combining the binuclear complexes [{Cu(H(2)O)L(1)}Ln(O(2)NO)(3)] or [{CuL(2)}Ln(O(2)NO)(3)] (L(1) = N,N'-propylene-di(3-methoxysalicylideneiminato); L(2) = N,N'-ethylene-di(3-methoxysalicylideneiminato); Ln = Gd(3+), Sm(3+), Tb(3+)), with the mononuclear [CuL(1)(2)] and the nickel dithiolene complexes [Ni(mnt)(2)](q)- (q = 1, 2; mnt = maleonitriledithiolate), as follows: (1)infinity[{CuL(1)}(2)Ln(O(2)NO){Ni(mnt)(2)}].Solv.CH(3)CN (Ln = Gd(3+), Solv = CH(3)OH (1), Ln = Sm(3+), Solv = CH(3)CN (2)) and [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)][Ni(mnt)(2)] (3) with [Ni(mnt)2]2-, [{(CH(3)CN)CuL(1)}(2)Ln(H(2)O)][Ni(mnt)(2)]3.2CH(3)CN (Ln = Gd(3+) (4), Sm(3+) (5), Tb(3+) (6)), and [{(CH(3)OH)CuL(2)}{CuL(2)}Gd(O(2)NO){Ni(mnt)(2)}][Ni(mnt)(2)].CH(2)Cl(2) (7) with [Ni(mnt))(2]*-. Trinuclear, almost linear, [CuLnCu] motifs are found in all the compounds. In the isostructural 1 and 2, two trans cyano groups from a [Ni(mnt)2]2- unit bridge two trimetallic nodes through axial coordination to the Cu centers, thus leading to the establishment of infinite chains. 3 is an ionic compound, containing discrete [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)](2+) cations and [Ni(mnt)(2)](2-) anions. Within the series 4-6, layers of discrete [CuLnCu](3+) motifs alternate with stacks of interacting [Ni(mnt)(2)](*-) radical anions, for which two overlap modes, providing two different types of stacks, can be disclosed. The strength of the intermolecular interactions between the open-shell species is estimated through extended Hückel calculations. In compound 7, [Ni(mnt)(2)](*-) radical anions coordinate group one of the Cu centers of a trinuclear [Cu(2)Gd] motif through a CN, while discrete [Ni(mnt)(2)](*-) units are also present, overlapping in between, but also with the coordinated ones. Furthermore, the [Cu(2)Gd] moieties dimerize each other upon linkage by two nitrato groups, both acting as chelate toward the gadolinium ion from one unit and monodentate toward a Cu ion from the other unit. The magnetic properties of the gadolinium-containing complexes have been determined. Ferromagnetic exchange interactions within the trinuclear [Cu(2)Gd] motifs occur. In the compounds 4 and 7, the [Ni(mnt)(2)](*-) radical anions contribution to the magnetization is clearly observed in the high-temperature regime, and most of it vanishes upon temperature decrease, very likely because of the rather strong antiferromagnetic exchange interactions between the open-shell species. The extent of the exchange interaction in the compound 7, which was found to be antiferromagnetic, between the coordinated Cu center and the corresponding [Ni(mnt)(2)](*-) radical anion, bearing mostly a 3p spin type, was estimated through CASSCF/CASPT2 calculations. Compound 6 exhibits a slow relaxation of the magnetization.  相似文献   

9.
Two sterically hindered tris-pyridyl methane ligands, tris(6-methyl-2-pyridyl)methane (L1) and bis(6-methyl-2-pyridyl)pyridylmethane (L2), are newly synthesized. Under aerobic conditions, Ln (n = 1 or 2) reacts with CuX2 (X = Cl or Br), oxygenated at the methine position to LnOH or LnOMe. The former alcoholate ligand creates trinuclear Cu(II) complexes [Cu3(X)(LnO)3](PF6)2 [(X, n) = (Br, 1) 1, (C1, 1) 2, (Br, 2) 3, or (C1, 2) 4] in which the alkoxide oxygen atoms bridge copper centers. The crystal structures of 1-4 are presented along with their magnetic susceptibility data. The weak antiferromagnetic coupling between the Cu(II) centers in this trinuclear arrangement is due to weak interaction of the magnetic orbitals (dz2) which are oriented along three alternate sides in a hexagon of the Cu3O3 core in 1-4. Under anaerobic conditions, L1 reacts with CuBr2 to form a square pyramidal complex [CuL1Br2] (9) with the ligand facially capping. [Cu(Br)2(L1OMe)] (10) was obtained after the suspension of 9 in MeOH was stirred under air for 48 h. In the presence of cyclohexene, 9 is converted to [Cu(Br)(L1)]m (m = 1 or 2) 5 quantitatively to give trans- 1,2-dibromocyclohexane, indicating that Br2 is generated during the reaction. The FAB MS spectrum of [18O]-1 prepared by the reaction of L1 with CuBr2 under 18O2 shows that the ligand of [18O]-1 is L1(18O-.) L1(18OH), L1OCD3, and bis(6-methyl-2-pyridyl) ketone were obtained from reaction of L1 with CuBr2 in CD3OD under 18O2. These results indicate that the origins of the O atom in L1OH and L1OMe are O2 and MeOH, respectively. On the basis of these results, a mechanism of the oxygenation of L1 in the present system will be proposed.  相似文献   

10.
Two new Cu(II) linear trinuclear Schiff base complexes, [Cu3(L)2(CH3COO)2] (1) and [Cu3(L)2(CF3COO)2] (2), have been prepared using a symmetrical Schiff base ligand H2L [where H2L = N,N'-bis(2-hydroxyacetophenone)propylenediimine]. Both of the complexes have been characterized by elemental analyses, Fourier transform IR, UV/vis, and electron paramagnetic resonance spectroscopy. Single-crystal X-ray structures show that the adjacent Cu(II) ions are linked by double phenoxo bridges and a mu(2)-eta(1):eta(1) carboxylato bridge. In each complex, the central copper atom is located in an inversion center with distorted octahedral coordination geometry, while the terminal copper atoms have square-pyramidal geometry. Cryomagnetic susceptibility measurements over a wide range of temperature exhibit a distinct antiferromagnetic interaction of J = -36.5 and -72.3 cm(-1) for 1 and 2, respectively. Density functional theory calculations (B3LYP functional) and continuous-shape measurement (CShM) studies have been performed on the trinuclear unit to provide a qualitative theoretical interpretation of the antiferromagnetic behavior shown by the complexes.  相似文献   

11.
Formation constants of copper(II), zinc(II), calcium(II) and gadolinium(III) with N,N'-bis(2-hydroxyiminopropionyl) propane-1,3-diamine (L2) have been studied at 25 degrees C and an ionic strength of 0.15 mol dm(-3). The reasonably high formation constants of the copper with this ligand are due to the ease with which the metal ion deprotonates the amide moieties. The square-planar coordination of L2 towards copper as predicted from UV-visible data may also account for the high selectivity of L2 towards the metal ion. Octanol/water partition coefficients of Cu(II)-L2 complexes indicate that although these complexes are largely hydrophilic, approximately 1.86% of the [CuL2H(-1)] species goes into the octanol layer and hence may promote dermal absorption of copper with a calculated penetration rate of 1.24 x 10(-5) cm h(-1). The [CuL2H(-1)] complex which predominates at pH 7.4 is a poor mimic of native copper-zinc superoxide dismutase. Blood-plasma simulation studies predict that, despite the high concentration of zinc and calcium in vivo, L2 is able to increase the low-molecular-mass fraction of copper. Biodistribution experiments using 64Cu-labelled [CuL2H(-1)] indicate an initial high uptake of this species in the liver, but it is predominantly excreted through the renal system.  相似文献   

12.
4,4'-联吡啶、吡嗪和咪唑桥联铜、镍配合物的合成和磁性   总被引:4,自引:1,他引:3  
合成了六个含氮杂环桥联配合物: [Ni(salal)2(4,4'-bipy)]n、[Ni(Et-dtp)2(4,4'-bipy)]n、[Cu(acac)2(4,4'-bipy)]n、[Cu(TTA)2(pyz)]n、[Cu(TTa)(Im)]n和[Cu(Im)2]n, 用元素分析、IR、MS、ESR和热重分析对它们的结构和性质作了表征。吡嗪配合物的晶体结构显示, 吡嗪配位于拉伸八面体的轴向位置, 桥联Cu(TTA)2形成一维无限链状结构。变温磁化率表明, 4,4'-联吡啶和吡嗪配合物的磁性遵从Curie-Weiss定律, 分子内没有明显的磁交换作用。咪唑配合物中存在着较强的反铁磁性交换作用, 磁交换常数分别为-75和-107cm^-^1。对4,4'-联吡啶、吡嗪和咪唑传递磁交换的性质作了讨论。  相似文献   

13.
A new tridentate Schiff base ligand HL (L = C14H19N2O), derived from the condensation of benzoylacetone and 2-dimethylaminoethylamine in a 1:1 ratio, reacts with copper(ii) acetate and cyanate, thiocyanate or azide, to give rise to several end-to-end polymeric complexes of formulae [CuL(mu(1,3)-NCO)]n 1, [CuL(mu(1,3)-NCS)]n 2 and the complex 3 has two crystallographically independent units of formula [CuL(N3)] in the asymmetric unit cell. Complex 3 exists in dimeric form rather than as a polymeric chain. Compound 1 is the first report of a singly end-to-end cyanate bridged polymeric chain of Cu(II) with a Schiff base as a co-ligand. There are many examples of double NCS bridged polymeric chains, but fewer singly bridged ones such as compound 2. We have characterized these complexes by analytical, spectroscopic, structural and variable temperature magnetic susceptibility measurements. The coordination geometry around the Cu(II) centers is distorted square pyramidal for 1 and 2 and square planar for complex 3. The magnetic susceptibility data show slight antiferromagnetic coupling for the polymers having J values -0.19 and -0.57 cm(-1) for complexes 1 and 2 respectively. The low values of J are consistent with the equatorial-axial disposition of the bridges in the polymers.  相似文献   

14.
A series of putative mono- and binuclear copper(II) complexes, of general formulas [CuL](ClO(4)) and [Cu(2)L](ClO(4))(2), respectively, have been synthesized from lateral macrocyclic ligands that have different compartments, originated from their corresponding precursor compounds (PC-1, 3,4:9,10-dibenzo-1,12-[N,N'-bis[(3-formyl-2-hydroxy-5-methyl)benzyl]diaza]-5,8-dioxacyclotetradecane; and PC-2, 3,4:9,10-dibenzo-1,12-[N,N'-bis[(3-formyl-2-hydroxy-5-methyl)benzyl]diaza]-5,8-dioxacyclopentadecane). The precursor compound PC-1 crystallized in the triclinic system with space group P(-)1. The mononuclear copper(II) complex [CuL(1a)](ClO(4)) is crystallized in the monoclinic system with space group P2(1)/c. The binuclear copper(II) complex [Cu(2)L(2c)](ClO(4))(2) is crystallized in the triclinic system with space group P(-)1; the two Cu ions have two different geometries. Electrochemical studies evidenced that one quasi-reversible reduction wave (E(pc) = -0.78 to -0.87 V) for mononuclear complexes and two quasi-reversible one-electron-transfer reduction waves (E(1)(pc) = -0.83 to -0.92 V, E(2)(pc) = -1.07 to -1.38 V) for binuclear complexes are obtained in the cathodic region. Room-temperature magnetic-moment studies convey the presence of antiferromagnetic coupling in binuclear complexes [mu(eff) = (1.45-1.55)mu(B)], which is also suggested from the broad ESR spectra with g = 2.10-2.11, whereas mononuclear complexes show hyperfine splitting in ESR spectra and they have magnetic-moment values that are similar to the spin-only value [mu(eff) = (1.69-1.72)mu(B)]. Variable-temperature magnetic susceptibility study of the complex shows that the observed -2J value for the binuclear complex [Cu(2)L(1b)](ClO(4))(2) is 214 cm(-1). The observed initial rate-constant values of catechol oxidation, using complexes as catalysts, range from 4.89 x 10(-3) to 5.32 x 10(-2) min(-1) and the values are found to be higher for binuclear complexes than for the corresponding mononuclear complexes.  相似文献   

15.
铜(II)-锰(II)四核配合物的合成、晶体结构和磁性   总被引:1,自引:1,他引:1  
(中国地质大学地质实验室, 北京100083) 报道了一个草酰胺桥连的四核Cu(II)Mn(II)配合物[Mn(CuL)3][Mn(H2O)6][N(CN)2]2(ClO4)2 4H2O (L为1,4,8,11-四氮杂环十四烷-2,3-二酮) (C34H74Cl2Cu3Mn2N18O24, Mr = 1490.51)的合成、晶体结构和磁性。配合物属于单斜晶系, 空间群为C2/c, 晶胞参数如下:a = 22.295(5), b = 12.852(3), c = 20.109(4) , = 90.47(3), V = 5762(2) 3, Dc = 1.718 g/m3, Z = 4, F(000) = 3068, m = 1.701mm-1, R = 0.0915, wR = 0.1810 (based on F2)。3个中性Cu(II)大环配合物通过6个氧原子与Mn(II)配位, MnO键长范围为2.190(6)~2.208(5) 拧Mn(CuL)3]2+通过高氯酸根离子连接起来形成一个二维层。高氯酸根的氧原子与CuII键长范围为2.902~2.996 , 为弱相互作用。[Mn(H2O)6]2+, N(CN)2-和H2O位于层间, 并通过氢键连成三维网络结构。磁性研究表明CuII-MnII离子间通过草酰胺传递反铁磁相互作用, 用基于各向同性的Hamiltonian算符 = 2JMnCuMn(Cu1 + Cu2 + Cu3)进行磁性拟合得到磁耦合常数JCuMn =-17 cm-1。  相似文献   

16.
廖代正  林兵  王耕霖 《化学学报》1992,50(3):269-273
合成和表征了两种新的异双核配合物[Cu(oxap)Mn(L)~2](ClO~4)~2, oxap表示N,N'-双(2-氨基丙基)草酰胺根阴离子, L表示1,10-邻菲咯啉(phen)和5-硝基-1,10-邻菲咯啉(NO~2-phen)。测定了配合物的变温磁化率(4.2-300K), 并用最小二乘法和从自旋Hamiltonian算符, ^^H=-2J^^S~1.^^S~2-D^^S~Z~1导出的磁方程拟合。求得交换积分为J=-74.72cm^-^1(phen)和J=-76.39cm^-^1(No~2-phen), 表明两个Cu(II)-Mn(II)双核配合物中有中等强度的反铁磁超交换作用。  相似文献   

17.
Reactions of UCl4 with 25,27-dimethoxy-5,11,17,23-tetra-tert-butylcalix[4]arene (H2Me2calix) in THF or pyridine at 80 degrees C gave [UCl2(Me2calix)L2] [L = THF (1) or pyridine (2)]. Similar treatment of U(acac)(4) (acac = MeCOCHCOMe) with H2Me2calix in THF or pyridine afforded [U(acac)2(Me2calix)] (3). The bis-calixarene compound [U(Me2calix)(H2calix)] (4) was obtained by reaction of U(OTf)4 or U(OTf)3 with H2Me2calix in pyridine at 110 degrees C. Treatment of UCl4 with H2Me2calix in pyridine at 110 degrees C gave [Mepy][UCl2(Hcalix)(py)2] (5) resulting from demethylation and acid cleavage of the methoxy groups of the calixarene ligand of 2. Adventitious traces of air were responsible for the formation of [Hpy][Mepy]4[{UCl(calix)}3(mu3-O)][UCl6] (6) during the reaction of UCl4 and H2Me2calix, and of [{U(Me2calix)(mu3-O)LiCl(THF)}2] (7) during the reaction of 2 with tBuLi. The X-ray crystal structures of 1.2THF, 2.2py, 3.0.25L (L = THF and py), 4.2py, 5, 6.3py and 7.THF have been determined.  相似文献   

18.
Novel complexes of the type [CuL2]3[Cr(NCS)6]2·xH2O (L = 2,2-bipyridine (bpy), x = 0; L = o-phenanthroline (phen), x = 1), [Cu(dien)]3[Cr(NCS)6]2·3H2O (dien=diethylenetriamine) or [Ni(phen)2]3[Cr(NCS)6]2· 2H2O have been prepared and studied by elemental analyses, i.r. spectra and magnetic measurements. Some of the complexes have been characterized by temperature-dependent magnetic susceptibilities, and weak antiferromagnetic exchange interaction was found for [Cu-(phen)2]3[Cr(NCS)6]2·H2O and [Ni(phen)2]3[Cr(NCS)6]2· 2H2O. Physico-chemical studies account for the polymeric structure, with thiocyanate bridges between Cu or octahedral Ni and octahedral Cr (chromophore CrN6).  相似文献   

19.
Yuan M  Zhao F  Zhang W  Wang ZM  Gao S 《Inorganic chemistry》2007,46(26):11235-11242
By changing ancillary tetradentate Schiff base ligands (L), two new one-dimensional azide-bridged manganese(III) coordination complexes [MnIII(L)(mu1,3-N3)]n [L = 5-Fsalen (1), 5-OCH3 (2); salen = N,N'-bis(salicylidene)-1,2-diaminoethane] as well as a mononuclear complex [MnIII(salophen)(N3)] (3) [salophen = N,N'-bis(salicylidene)-o-phenylenediamine] have been successfully obtained. All of them have been structurally and magnetically characterized. In the structures of 1-3 each MnIII ion is in a distorted octahedral geometry with an obvious Jahn-Teller effect, where the tetradentate L ligands all bind in the equatorial mode, whereas in the axial direction, the N3- ion acts as an end-to-end bridge in 1 and 2 while a terminal group in 3 with a methanol molecule at the other end. Magnetic characterization shows that the mu1,3-bridging azide ion proves to mainly transmit antiferromagnetic interaction between MnIII ions, but these three complexes exhibit various magnetic behaviors at low temperatures. Noteworthily, complex 2 behaves as a weak ferromagnet with a relatively large coercive field of 2.3 kOe, much larger than the value reported previously.  相似文献   

20.
Bu XH  Liu H  Du M  Zhang L  Guo YM  Shionoya M  Ribas J 《Inorganic chemistry》2002,41(7):1855-1861
The reactions of 3,6-di-2-pyridyl-1,2,4,5-tetrazine (DPTZ) with different Cu(II) salts generate two new ligands, 2,5-bis(2-pyridyl)-1,3,4-oxodiazole (L(1)) and N,N'-bis(alpha-hydroxyl-2-pyridyl)ketazine (H(2)L(2)), from the metal-assisted hydrolysis of DPTZ, and form three new complexes: a mononuclear complex [Cu(L(1))(2)(H(2)O)(2)] .2ClO(4) (1), a linear coordination polymer [Cu(L(1))(NO(3))(2)](8) (2), and a cyclic tetranuclear complex [Cu(4)(L(2))(2)(Im)(2)(NO(3))(4)(H(2)O)(2)] (3) (Im = imidazole). Crystal data for 1: space group P2(1)/n with a = 10.339(3) A, b = 10.974(2) A, c = 13.618(4) A, beta = 103.24(1) degrees, and Z = 2. Crystal data for 2: space group C2/c with a = 13.9299(14) A, b = 9.2275(9) A, c = 12.1865(13) A, beta = 111.248(2) degrees, and Z = 4. Crystal data for 3: space group P2(1)/n with a = 9.3422(14) A, b = 15.987(2) A, c = 13.963(2) A, beta = 108.587(3) degrees, and Z = 2. L(1) acts as a bidentate chelating ligand in 1 and as a bis-bidentate chelating ligand in 2 with the shortest intramolecular Cu...Cu distance of 6.093 A. L(2) is a hexadentate ligand to bridge four Cu(II) ions, forming an interesting neutral cyclic tetranuclear complex 3 with Cu...Cu distances varying from 4.484 to 9.370 A. The mechanism of the metal assisted hydrolysis of DPTZ is discussed in detail. Magnetic susceptibility measurements indicate that 2 shows weak ferromagnetic interaction (J = 2.85 cm(-1)) along the 1-D helical chain, and that 3 displays weak antiferromagnetic interaction (J = -1.19 cm(-1) for the N-N bridge) and ferromagnetic interaction (j = 0.11 cm(-1) for the O-C=N bridge) between the adjacent Cu(II) ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号