首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Solid-phase microextraction (SPME) is a solvent-free sample-preparation technique that enables isolation and pre-concentration of analytes from a sample on a thin film coating a fused-silica fiber. In this study SPME coupled with microcolumn liquid chromatography (micro LC) has been used for the determination of four tricyclic antidepressants (amitriptyline, imipramine, nortriptyline, and desipramine) in human urine. SPME conditions which affect extraction efficiency were optimized, and under the optimum conditions the system was a few hundred times more sensitive than direct LC analysis without SPME. For amitriptyline the detection limit was 3 ng mL−1 and the calibration curve was linear in the range of 5–500 ng mL−1. The SPME-micro LC method has been applied to the analysis of amitriptyline in patient’s urine.  相似文献   

2.
The chromatographic behavior of seven tricyclic antidepressants (amitryptiline, clomipramine, doxepin, imipramine, maprotiline, nortryptiline, and trimipramine) was examined with micellar mobile phases containing the nonionic surfactant Brij-35. Acetonitrile-water mixtures were also used for comparison purposes. Tricyclic antidepressants are moderately polar basic drugs, which are positively charged in the usual working pH. This gives rise to a strong association with the alkyl chains and residual ionized silanols in silica-based stationary phases, which is translated in a high consumption of organic solvent to get appropriate retention times. Brij-35 modifies the surface of the stationary phases creating a neutral bilayer that masks silanols and reduces the polarity. Consequently, the retention times are decreased. A simple chromatographic procedure for the control of tricyclic antidepressants in pharmaceutical formulations was developed, using 0.02 M Brij-35 at pH 3 and UV detection. Satisfactory recoveries were achieved, with intra- and inter-day relative standard deviations usually below 1 and 2%, respectively. The preparation of the samples was simple and only required solubilization and filtration steps previous to injection. The proposed procedure has the advantage of not using an organic solvent in the mobile phase, and the biodegradable character of Brij-35. This makes an example of "green" liquid chromatographic analysis.  相似文献   

3.
Huang SD  Huang HI  Sung YH 《Talanta》2004,64(4):887-893
Solid-phase microextraction (SPME) coupled with high-performance liquid chromatography (HPLC) for the determination of triazine is described. Carbowax/templated resin (CW/TPR, 50 μm), polydimethylsiloxane/divinylbenzene (PDMS/DVB, 60 μm), polydimethylsiloxane (PDMS, 100 μm), and polyacrylate (PA, 85 μm) fibers were evaluated for extraction of the triazines. CW/TPR and PDMS/DVB fibers were selected for further study. Several parameters of the extraction and desorption procedure were studied and optimized (such as types of fibers, desorption mode, desorption time, compositions of solvent for desorption, soaking periods and the flow rate during desorption period, extraction time, temperature, pH, and ionic strength of samples). Both CW/TPR and PDMS/DVB fibers are acceptable; a simple calibration-curve method based on simple aqueous standards can be used. The linearity of this method for analyzing standard solution has been investigated over the range 5-1000 ng mL−1 for both PDMS/DVB and CW/TPR fibers. All the correlation coefficients in the range 5-1000 ng mL−1 were better than 0.995 except Simazine and Atratone by CW/TPR fiber. The R.S.D.s range from 4.4% to 8.8 % (PDMS/DVB fiber) and from 2.4% to 7.2% (CW/TPR fiber). Method-detection limits (MDL) are in the range 1.2-2.6 and 2.8-3.4 ng mL−1 for the two fibers. These methods were applied to the determination of trazines in environmental water samples (lake water).  相似文献   

4.
Abstract

A sequential injection analysis method for the simultaneous spectrophotometric determination of phosphate and silicate has been developed. The method is based on the different reaction rates of the heteropolymolybdate formation reactions. Concentrations within the range 0.026—0.485 mmol P l?1 and 0.125—2.848 mmol Si l?1 have been determined at a frequency of 30 samples per hour. An R.S.D. of 2.1% was obtained for 0.162 mmol P l?1 and of 1.1% for 1.424 mmol Si l?1. The method was found to be suitable for the determination of phosphate and silicate in wastewater.  相似文献   

5.
The use of a different optimization procedure that involves Experimental Design (ED) and Artificial Neural Networks (ANN) for the off-line coupling solid-phase microextraction-micellar electokinetic chomatography (SPME-MEKC) is presented. This combination of ED and ANN, mathematical tools not previously used in SPME-MEKC optimization, allowed us to obtain good extraction efficiencies in the SPME procedure for the determination of a group of eleven triazine herbicides in groundwater samples. Both extraction and desorption steps were carried out by solution stirring at 900 rpm. Optimal conditions for the off-line SPME procedure were: extraction with a poly(dimethylsiloxane)/divinylbenzene SPME fiber for 120 min, 10% (w/v) NaCl, desorption time 40 min, and 70% (v/v) of methanol/buffer as desorption mixture. Detection limits lay between 0.80 microg L(-1) and 4.89 microg L(-1). Finally, the optimized method was applied to the determination of these compounds in spiked and non-spiked groundwater samples using a previously optimized MEKC separation.  相似文献   

6.
A new fiber based on the electrochemical reduction of graphene oxide was prepared on a copper wire for solid‐phase microextraction (SPME) applications. The prepared fiber was used for the SPME and gas chromatographic analysis of tricyclic antidepressants (TCADs), including amitriptyline, trimipramine, and clomipramine. The feasibility of direct‐immersion and headspace modes of SPME for the determination of TCADs was studied. The effects of four parameters including pH, salt content, extraction temperature with and without cooling the fiber, and extraction time were investigated. The comparison showed that headspace cold fiber SPME results in the best outcome for the extraction of TCADs. Under the optimized conditions of this mode, the calibration curves were linear between 2.0 and 500 ng/mL and the detection limits were between 0.30 and 0.53 ng/mL. The intraday and interday RSDs obtained at 20 ng/mL (n = 5), using a single fiber, were 5.5–9.0 and 7.5–9.8, respectively. The fiber to fiber repeatability (n = 4), expressed as the RSD, was between 12.8 and 13.2% at a 20 ng/mL concentration level. The method was successfully applied to the analysis of TCADs in plasma samples showing recoveries from 73 to 96%.  相似文献   

7.
An online device is described in which analytes are extracted from a liquid sample by means of in-tube solid-phase microextraction (in-tube SPME), pulse released by rapid heating, and transferred to a gas chromatograph in a fully automated way. Switching of the sample and gas flows as well as the heating of the extraction tube and the valves is controlled by a remote computer system. Results obtained for river water and for aqueous standard solutions of phenanthrene are presented and are compared to the performance of standard SPME.  相似文献   

8.
Solid-phase microextraction coupled with high-performance liquid chromatography was successfully applied to the analysis of nine phenylurea herbicides (metoxuron, monuron, chlorotoluron, isoproturon, monolinuron, metobromuron, buturon, linuron, and chlorbromuron). Polydimethylsiloxane-divinylbenzene (PDMS-DVB, 60 microm) and Carbowax-templated resin (CW-TPR, 50 microm) fibers were selected from four commercial fibers for further study because of their better extraction efficiencies. The parameters of the desorption procedure were studied and optimized. The effects of the properties of analytes and fiber coatings, carryover, duration and temperature of absorption, pH, organic solvent and ionic strength of samples were also investigated. External calibration with an aqueous standard can be used for the analysis of environmental samples (lake water) using either PDMS-DVB or CW-TPR fibers. Good precisions (1.0-5.9%) are achieved for this method, and the detection limits are at the level of 0.5-5.1 ng/ml.  相似文献   

9.
A HPLC method has been developed for the simultaneous determination of seven tricyclic antidepressants (TCAs) and seven metabolites in human plasma. The analyte separation was obtained using a C8 reversed phase column and a mobile phase composed of 68% aqueous phosphate buffer at pH 3.0 and 32% ACN. The UV detector was set at 220 nm and loxapine was used as the internal standard. A careful pre‐treatment procedure for plasma samples was developed, using SPE on C2 cartridges, which gives satisfactory extraction yields (>80%) and good sample purification. The LOQs were always lower than 9.1 ng/mL and the LODs always lower than 3.1 ng/mL for all analytes. The method was successfully applied to plasma samples from depressed patients undergoing therapy with one or more TCA drugs. Precision data (RSD <8.1%), as well as accuracy results (recovery >80%), were satisfactory and no interference from other drugs was found. Hence the method seems to be suitable for the therapeutic drug monitoring of patients treated with TCAs under monotherapy or polypharmacy regimens.  相似文献   

10.
A sensitive procedure for the determination of three UV filters: ethylhexyl salicylate (EHS), 3,3,5-trimethylcyclohexyl salicylate (Homosalate, HMS), 2-hydroxy-4-methoxybenzophenone (BP-3) and two related hydroxylated benzophenones (2,4-dihydroxybenzophenone, BP-1 and 2,2′-dihydroxy-4-methoxybenzophenone, BP-8) in water samples is presented. Analytes were first concentrated on the coating of a solid-phase microextraction (SPME) fibre, on-fibre silylated and then determined using gas chromatography combined with tandem mass spectrometry (GC-MS/MS). Factors affecting the performance of extraction and derivatization steps are thoroughly evaluated and their effects on the yield of the sample preparation discussed. Under final working conditions, a PDMS-DVB coated SPME fibre was exposed directly to 10 mL of water, adjusted at pH 3, for 30 min. After that, the fibre was placed in the headspace (HS) of a 1.5 mL vial containing 20 μL of N-methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA). On-fibre silylation of hydroxyl groups contained in the structure of target compounds was performed at 45 °C for 10 min. The whole sample preparation process was completed in 40 min, providing limits of quantification from 0.5 to 10 ng L−1 and acceptable precision (RSDs under 13%) for samples spiked at different concentrations. All compounds could be accurately determined in river and treated wastewater (relative recoveries from 89 to 115%) using standards in ultrapure water, whereas standard addition is recommended to quantify their levels in untreated wastewater. Analysis of wastewater revealed the systematic presence of BP-3 and BP-1 in raw samples with maximum concentrations close to 500 and 250 ng L−1, respectively.  相似文献   

11.
In this work, a C18 composite solid-phase microextraction (SPME) fiber was prepared with a new method and applied to the analysis of organochlorine pesticides (OCPs) in water sample. A stainless steel wire (o.d. 127 μm) was used as the substrate, and a mixture of the C18 particle (3.5 μm) and the 184 silicone was used as the coating material. During the process of fiber preparation, a section of capillary column was used to fix the mixture onto the stainless steel wire and to ensure the constant of coating thickness. The prepared fiber showed excellent thermal stability and solvent resistance. By coupling with gas chromatography–mass spectrometry (GC–MS), the fiber exhibited wide linearity (2–500 ng L−1) and good sensitivity for the determination of six OCPs in water samples, the OCPs tested included hexachlorobezene, trans-chlordane, cis-chlordane, o,p-DDT, p,p-DDT and mirex. Not only the extraction performance of the newly prepared fiber was more than seven times higher than those of commercial fibers, the limits of detections (LODs) (0.059–0.151 ng L−1) for OCPs achieved under optimized conditions were also lower than those of reported SPME methods. The fiber was successfully applied to the determination of OCPs in real water samples by using developed SPME–GC–MS method.  相似文献   

12.
《Analytica chimica acta》2004,506(1):71-80
We describe an estimation of measurement uncertainty calculated by the “bottom-up” approach for the determination of the oestrogenic compound nonylphenol in treated water samples by solid-phase extraction (SPE) and solid-phase microextraction (SPME) procedures and GC/MS detection. The results were compared and the different contributions to the uncertainty were evaluated. A study of the linear range was established and validation was performed for both methods using statistical analysis of several indicative parameters. In terms of validation data, precision (R.S.D. values <20%) and trueness (relative error <11%) were obtained for both methods under day-to-day conditions. The results of the estimation of measurement uncertainty obtained for both methods for concentrations higher than 1 μg/l have demonstrated that the time-consuming SPE method has a lower relative uncertainty (32%) than the SPME method (42.8%). The chromatographic uncertainty value was the main factor in the SPME method whereas the recovery factor (used to calculate the concentration) was the main contribution to uncertainty in the SPE method.  相似文献   

13.
A solid-phase microextraction method (SPME) coupled to gas chromatography-mass spectrometry (GC-MS) has been developed for the determination of the six phthalate esters included in the US Environmental Protection Agency (EPA) Priority Pollutants list in water samples. These compounds are dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), butylbenzyl phthalate (BBP), di-2-ethylhexyl phthalate (DEHP) and di-n-octyl phthalate (DOP). Detailed discussion of the different parameters, which could affect the extraction process, is presented. Main factors have been studied and optimized by means of a multifactor categorical design. Different commercial fibers, polydimethylsiloxane (PDMS), polydimethylsiloxane-divinylbenzene (PDMS-DVB), polyacrylate (PA), Carboxen-polydimethylsiloxane (CAR-PDMS) and Carbowax-divinylbenzene (CW-DVB), have been investigated, as well as the extraction mode, exposing the fiber directly into the sample (DSPME) or into the headspace over the sample (HS-SPME), and different extraction temperatures. The use of this experimental design allowed for the evaluation of interactions between factors. Extraction kinetics has also been studied. The optimized microextraction method showed linear response and good precision for all target analytes. Detection limits were estimated considering the contamination problems associated to phthalate analysis. They were in the low pg mL(-1), excluding DEHP (100 pg mL(-1)). The applicability of the developed SPME method was demonstrated for several real water samples including mineral, river, industrial port and sewage water samples. All the target analytes were found in real samples. Levels of DEP and DEHP were over 1 ng mL(-1) in some of the samples.  相似文献   

14.
Summary A study of different extraction techniques for the determination of a selected group of organochlorine compounds in surface waters is presented. Comparison of liquid-liquid extraction (LLE) with solid-phase extraction (SPE) and solid-phase microextraction (SPME) with fibers of different polarity shows that SPME with a recently commercialised fiber of polydimethylsiloxane divinylbenzene allows these compounds to be determined in surface waters with good extraction efficiencies. Extraction time, effect of temperature, ionic strength and pH were optimised, allowing quantification in agricultural effluents in the range 1.0–60 ng·L−1.  相似文献   

15.
A solid-phase microextraction method (SPME) followed by gas chromatography with micro electron capture detection for determining trace levels of nitro musk fragrances in residual waters was optimized. Four nitro musks, musk xylene, musk moskene, musk tibetene and musk ketone, were selected for the optimization of the method. Factors affecting the extraction process were studied using a multivariate approach. Two extraction modes (direct SPME and headspace SPME) were tried at different extraction temperatures using two fiber coatings [Carboxen–polydimethylsiloxane (CAR/PDMS) and polydimethylsiloxane–divinylbenzene (PDMS/DVB)] selected among five commercial tested fibers. Sample agitation and the salting-out effect were also factors studied. The main effects and interactions between the factors were studied for all the target compounds. An extraction temperature of 100 °C and sampling the headspace over the sample, using either CAR/PDMS or PDMS/DVB as fiber coatings, were found to be the experimental conditions that led to a more effective extraction. High sensitivity, with detection limits in the low nanogram per liter range, and good linearity and repeatability were achieved for all nitro musks. Since the method proposed performed well for real samples, it was applied to different water samples, including wastewater and sewage, in which some of the target compounds (musk xylene and musk ketone) were detected and quantified. Figure Stardardized Pareto charts for the main effects and interactions  相似文献   

16.
A method for the simultaneous extraction of four tricyclic antidepressants from human plasma samples using pipette tip SPE with MonoTip C(18) tips is presented. Human plasma (0.1 mL) containing four tricyclic antidepressants (amitriptyline, amoxapine, imipramine, and trimipramine) and an internal standard (IS), protriptyline, was mixed with 0.4 mL of distilled water and 100 microL 1 M NaOH solution. After centrifugation of the mixture, the supernatant was extracted to the C(18) phase of the tip by 20 repeated aspirating/dispensing cycles using a manual micropipettor. The analytes retained in the tip were eluted with methanol by five repeated aspirating/dispensing cycles. Without evaporation and reconstitution, the eluate was directly injected into a gas chromatograph injector and detected by a mass spectrometer with SIM in the positive-ion electron impact mode. Recovery of the four antidepressants and IS spiked into human plasma was 80.2-92.1%. The regression equations for the four antidepressants showed excellent linearity in the range of 0.2-40 ng/0.1 mL. LODs and LOQs for the four drugs were 0.05-0.2 ng/0.1 mL and 0.2-0.5 ng/0.1 mL, respectively. Intra- and interday CVs for the four drugs in plasma were no greater than 9.5%.  相似文献   

17.
The growing use of antidepressants in recent years has led to their increasing presence in forensic analyses. In this work, microextraction by packed sorbent followed by ultra‐performance liquid chromatography with photodiode array detection provided a fast method for determining the antidepressants mirtazapine, venlafaxine, escitalopram, fluoxetine, fluvoxamine, and sertraline in human urine. The microextraction conditions (viz., type of sorbent, number of draw–eject extraction cycles or strokes, sample volume and pH, and type and volume of washing solution and eluent) were optimized by using an experimental design. The ensuing analytical method was validated in terms of linearity (25–1000 ng/mL urine), limit of detection (lower than 7.1 ng/mL), limit of quantification (25 ng/mL), precision (4.7–15.1% as relative standard deviation), and accuracy (80.4–126.1% as mean recovery for four replicate determinations). The proposed method allowed the six target antidepressants to be determined at concentrations from therapeutic to toxic levels. The application to small volumes (300 μL) of urine afforded fast extraction of the analytes and provided results on a par with those of existing clinical and forensic alternatives.  相似文献   

18.
A novel method of determining organochlorine pesticides (OCPs) is described. It is based on solid-phase microextraction (SPME) and gas chromatography–electron capture detection. During the development of the method, soil samples were prepared, spiked with standard solution, and then aged for some time. Extraction conditions such as the extraction time, the NaCl content, the volume of water, the extraction temperature and the desorption time were investigated and optimized. The limits of detection obtained using the method ranged from 0.10 to 0.51 ng g−1, and relative standard deviations were lower than 10% for most organochlorine pesticides. Real soil samples were successfully analyzed using the proposed method. The results from the method developed here were in good agreement with those obtained using ultrasonic extraction. The result demonstrates that aging soils spiked with standard solution is an important method development step, because the soil samples obtained using this approach are more like real soils than those obtained when aging is not used.   相似文献   

19.
This work describes a new approach for the determination of trimethylamine (TMA) in water and air by liquid chromatography (LC). The assay is based on the employment of a solid-phase microextraction (SPME) fiber for sampling and for derivatization of the analyte with the fluorogenic reagent 9-fluorenylmethyl chloroformate (FMOC). The fiber, with a Carbowax-templated resin −50 μm coating, was first immersed into a solution of the reagent. Once loaded with the reagent, the fiber was immersed into the water samples or exposed to the air samples in order to extract and to derivatize the analyte. Finally, the fiber was placed into a HPLC-SPME interface to desorb and transfer the TMA-FMOC derivative to the LC equipment. A comparative study of the analytical characteristics of the procedure in water and air samples was carried out. Under optimized conditions, the proposed approach permits the quantification of TMA in solution within the 1.0-10.0 μg/ml interval and in air within the 25-200 mg/m3 interval. The limits of detection were 0.25 μg/ml and 12 mg/m3 (25 °C, 1.013 × 10−5 Pa) in water and air, respectively. The utility of the proposed method for determining TMA in different kind of samples is discussed.  相似文献   

20.
A solid-phase microextraction (SPME) procedure using two commercial fibers coupled with high-performance liquid chromatography (HPLC) is presented for the extraction and determination of organochlorine pesticides in water samples. We have evaluated the extraction efficiency of this kind of compound using two different fibers: 60-μm polydimethylsiloxane–divinylbenzene (PDMS-DVB) and Carbowax/TPR-100 (CW/TPR). Parameters involved in the extraction and desorption procedures (e.g. extraction time, ionic strength, extraction temperature, desorption and soaking time) were studied and optimized to achieve the maximum efficiency. Results indicate that both PDMS-DVB and CW/TPR fibers are suitable for the extraction of this type of compound, and a simple calibration curve method based on simple aqueous standards can be used. All the correlation coefficients were better than 0.9950, and the RSDs ranged from 7% to 13% for 60-μm PDMS-DVB fiber and from 3% to 10% for CW/TPR fiber. Optimized procedures were applied to the determination of a mixture of six organochlorine pesticides in environmental liquid samples (sea, sewage and ground waters), employing HPLC with UV-diode array detector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号