首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regular square, wirelike, quadrate, and rodlike nanocrystal arrays of Cd2+, Hg2+, or Ag+ metal-cation-mediated sandwich-type mixed (phthalocyaninato) [5,10,15,20-tetrakis(4-pyridyl)poprhyrinato] cerium(III) double-decker complex Ce(Pc)(TPyP) have been successfully prepared at the water-chloroform interface. The nanocrystal growth processes were monitored by transmission electron microscopy (TEM), which reveals that different morphologies of nanocrystals have been fabricated from double-decker molecules connected by different kinds of metal cations, forming coordination polymers. These nanoscaled coordination polymers were characterized by FT-IR spectra and energy-dispersive X-ray spectra (EDS). EDS results clearly revealed the elements of the nanocrystals and the FT-IR spectra give evidence for the coordination interaction between the double-decker molecules and metal cations. The UV-vis absorption spectrum indicates the formation of J-aggregates of the double-decker molecules in the nanocrystals formed.  相似文献   

2.
A new family of mixed-lanthanide cyano-bridged coordination polymers Ln(0.5)Ln'(0.5)(H(2)O)(5)[W(CN)(8)] (where Ln/Ln' = Eu(3+)/Tb(3+), Eu(3+)/Gd(3+), and Tb(3+)/Sm(3+)) containing two lanthanide and one transition metal ions were obtained and characterized by X-ray diffraction, photoluminescence spectroscopy, magnetic analyses, and theoretical computation. These compounds are isotypical and crystallize in the tetragonal system P4/nmm forming two-dimensional grid-like networks. They present a magnetic ordering at low temperature and display the red Eu(3+) ((5)D(0) → (7)F(0-4)) and green Tb(3+) ((5)D(4) → (7)F(6-2)) characteristic photoluminescence. The Tb(0.5)Eu(0.5)(H(2)O)(5)[W(CN)(8)] compound presents therefore green and red emission and shows Tb(3+)-to-Eu(3+) energy transfer.  相似文献   

3.
Two new coordination polymers have been synthesized with Mn(2+) and Dy(3+) ions using a new bent ether-bridged tricarboxylic acid ligand, o-cpiaH(3) (5-(2-carboxy-phenoxy)-isophthalic acid). The ligand readily reacts with a Mn(2+) salt in presence of pyridine (py) under hydrothermal condition to afford a 3D coordination polymer {[Mn(9)(o-cpia)(6)(py)(3)(3H(2)O)]·H(2)O}(n) (1), that contains two types of polymeric chains. One of them is merely carboxylate bridged Mn(2+) where each metal ion shows both penta- and hexa-coordination. The other chain consists of carboxylate-bridging along with terminally bound pyridines providing both penta- and hexa-coordination to each metal ion. When o-cpiaH(3) is treated with Dy(NO(3))(3).xH(2)O under solvothermal condition, it gives rise to an unusual double layer (6,6) connected 2D coordination polymer {[Dy(o-cpia)]}(n)(2), where each metal ion is hexacoordinated. The double layer 2D sheets are stacked to each other in AA··· fashion through strong C-H···π interactions to generate an overall 3D supramolecular architecture. Both the complexes have been characterized by single crystal X-ray diffraction, IR spectroscopy, thermogravimetry and elemental analysis. Variable temperature magnetic susceptibility measurements indicate that 1 exhibits metamagnetic behavior while 2 shows weak antiferromagnetic behavior.  相似文献   

4.
We report the preparation of luminescent oxide-embedded germanium nanocrystals (Ge-NC/GeO2) by the reductive thermal processing of polymers derived from phenyl trichlorogermane (PTG, C6H5GeCl3). Sol-gel processing of PTG yields air-stable polymers with a Ge:O ratio of 1:1.5, (C6H5GeO1.5)n, that thermally decompose to yield a germanium rich oxide (GRO) network. Thermal disproportionation of the GRO results in nucleation and initial growth of oxide-embedded Ge-NC, and subsequent reaction of the GeO2 matrix with the reducing atmosphere results in additional nanocrystal growth. This synthetic method affords quantitative yields of composite powders in large quantities and allows for Ge-NC size control through variations of the peak thermal processing temperature and reaction time. Freestanding germanium nanocrystals (FS-Ge-NC) are readily liberated from Ge-NC/GeO2 composite powders by straightfoward dissolution of the oxide matrix in warm water. Composites and FS-Ge-NC were characterized using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX), and photoluminescence (PL) spectroscopy.  相似文献   

5.
Hydro- and solvo-thermal reactions of d-block metal ions (Mn(2+), Co(2+), Zn(2+) and Cd(2+)) with monosodium 2-sulfoterephthalate (NaH(2)stp) form six 3D coordination polymers featuring cluster core [M(4)(μ(3)-OH)(2)](6+) in common: [M(2)(μ(3)-OH)(stp)(H(2)O)] (M = Co (1), Mn (2) and Zn (3)), [Zn(2)(μ(3)-OH)(stp)(H(2)O)(2)] (4), [Zn(4)(μ(3)-OH)(2)(stp)(2)(bpy)(2)(H(2)O)]·3.5H(2)O (5) and [Cd(2)(μ(3)-OH)(stp) (bpp)(2)]·H(2)O (6) (stp = 2-sulfoterephthalate, bpy = 4,4'-bipyridine and bpp = 1,3-di(4-pyridyl)propane). All these coordination polymers were characterized by single crystal X-ray diffraction, IR spectroscopy, thermogravimetric and elemental analysis. Complexes 1-3 are isostructural coordination polymers with 3D frameworks based on the chair-like [Zn(4)(μ(3)-OH)(2)](6+) core and the quintuple helixes. In complex 4, there exist double helixes in the 3D framework based on the chair-like cluster cores. Complex 5 possesses a 2-fold interpenetration structure constructed from boat-like cluster core and the bridging ligands stp and bpy. For complex 6, the chair-like cluster cores and stp ligands form a 2D (4,4) network which is further pillared by bpp linkers to a 3D architecture. Magnetic studies indicate that complex 1 exhibits magnetic ordering below 4.9 K with spin canting, and complex 2 shows weak antiferromagnetic coupling between the Mn(II) ions with g = 2.02, J(wb) = -2.88 cm(-1), J(bb) = -0.37 cm(-1). The fluorescence studies show that the emissions of complexes 3-6 are attributed to the ligand π-π* transition.  相似文献   

6.
Three new coordination complexes, [Co(L)(ADTZ)]·H2O(1), [Cd(L)(ADTZ)]·H2O(2) and [Zn(L)(ADTZ)]·H2O(3)[L=3-pyridylnicotinamide, H2ADTZ=2,5-(s-acetic acid)dimercapto-1,3,4-thiadiazole], were synthesized under hydrothermal conditions. These complexes were structurally characterized by single-crystal X-ray diffraction analysis and further characterized by infrared spectroscopy(IR), powder X-ray diffraction (PXRD) and thermogravimetric analysis(TGA). Complexes 1-3 exhibit the similar 2D double-layer networks based on 1D [M-L], zigzag chains and 1D [M-ADTZ]2n double-chains with different distances between metal ions and with various conformations of ADTZ anions. In complexes 1 and 3, the 2D sheets are extended into a 3D supramolecular frameworks by hydrogen bonding interactions. The subtle effects of the central metal atoms on the structures of the title coordination polymers were discussed. The electrochemical properties of complex 1 and luminescent properties of complexes 2 and 3 were investigated. In addition, complexes 1-3 exhibit photocatalytic activity for dye methylene blue degradation under UV light and show good stability toward photoca- talysis.  相似文献   

7.
Colloidal Co(2+)- and Cr(3+)-doped TiO(2) nanorods and nanocrystals were synthesized and studied by X-ray powder diffraction, electronic absorption spectroscopy, magnetic circular dichroism spectroscopy, magnetic susceptibility, and transmission electron microscopy. The nanorods were paramagnetic as colloids but showed room-temperature ferromagnetism when spin-coated aerobically into films. Crystalline domain size, thermal annealing, and dopant or defect migration are not the dominating factors converting the doped TiO(2) nanocrystals from the paramagnetic state to the ferromagnetic state. The most important factor for activating ferromagnetism is found to be the creation of grain boundary defects, proposed to be oxygen vacancies at nanocrystal fusion interfaces. These defects are passivated and the ferromagnetism destroyed by further aerobic annealing. These results not only help elucidate the origins of the TM(n+):TiO(2) DMS ferromagnetism but also represent an advance toward the controlled manipulation of high-T(C) DMS ferromagnetism using external chemical perturbations.  相似文献   

8.
This paper reports the application of ligand-field electronic absorption spectroscopy to probe Co(2+) dopant ions in diluted magnetic semiconductor quantum dots. It is found that standard inverted micelle coprecipitation methods for preparing Co(2+)-doped CdS (Co(2+):CdS) quantum dots yield dopant ions predominantly bound to the nanocrystal surfaces. These Co(2+):CdS nanocrystals are unstable with respect to solvation of surface-bound Co(2+), and time-dependent absorption measurements allow identification of two transient surface-bound intermediates involving solvent-cobalt coordination. Comparison with Co(2+):ZnS quantum dots prepared by the same methods, which show nearly isotropic dopant distribution, indicates that the large mismatch between the ionic radii of Co(2+) (0.74 A) and Cd(2+) (0.97 A) is responsible for exclusion of Co(2+) ions during CdS nanocrystal growth. An isocrystalline core/shell preparative method is developed that allows synthesis of internally doped Co(2+):CdS quantum dots through encapsulation of surface-bound ions beneath additional layers of CdS.  相似文献   

9.
All-inorganic colloidal nanocrystals were synthesized by replacing organic capping ligands on chemically synthesized nanocrystals with metal-free inorganic ions such as S(2-), HS(-), Se(2-), HSe(-), Te(2-), HTe(-), TeS(3)(2-), OH(-) and NH(2)(-). These simple ligands adhered to the NC surface and provided colloidal stability in polar solvents. The versatility of such ligand exchange has been demonstrated for various semiconductor and metal nanocrystals of different size and shape. We showed that the key aspects of Pearson's hard and soft acids and bases (HSAB) principle, originally developed for metal coordination compounds, can be applied to the bonding of molecular species to the nanocrystal surface. The use of small inorganic ligands instead of traditional ligands with long hydrocarbon tails facilitated the charge transport between individual nanocrystals and opened up interesting opportunities for device integration of colloidal nanostructures.  相似文献   

10.
Two new two-dimensional (2D) heterometal coordination polymers [Cu(2)M(tzdc)(2)(H(2)O)(2)]·2H(2)O [M = Fe(2+) (1) or Mn(2+) (2); tzdc(3-) = 1,2,3-triazole-4,5-dicarboxylate] were assembled by using the tzdc(3-), Cu(2+), and Fe(2+)/Mn(2+) ions. Single-crystal X-ray analysis reveals that the two compounds consist of mixed-spin microporous Kagome? layers, which are packed into three-dimensional structures by hydrogen bonding and interlayer weak Cu···O interactions. When heated, they can release in a stepwise manner the uncoordinated and coordinated water molecules to produce dehydrated phases (1' and 2'), respectively, which are stable up to ~300 °C. The structures of 1' and 2' were determined by powder X-ray diffraction analysis, which reveals a change in the coordination sphere of Fe(2+)/Mn(2+) ions from an octahedron to an elongated 4+2 form, and a microporous-to-nonporous structural transformation involving intralayer wrinkling and interlayer superimposition. When the dehydrated samples are exposed to air, they can return to the hydrated phases quickly by adsorption of water molecules. Accordingly, a reversible change in magnetism between the ferrimagnetic character of the hydrated samples and the suppressed ferrimagnetic character of the dehydrated samples was found in this reversible dehydration and rehydration. These facts indicate these 2D heterometal coordination polymers are unique flexible 2D dynamic magnetic materials.  相似文献   

11.
Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions   总被引:3,自引:0,他引:3  
ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions were obtained by thermolysis of a family of metal cupferrates. The nanocrystals were characterized by X-ray diffraction, energy-dispersive X-ray analysis, transmission electron microscopy, UV-visible, luminescence, and excitation spectroscopy. The band gap of the nanocrystals can be tuned in the range of 2.9-3.8 eV by the use of the dopants. In most cases, the nanocrystals are sufficiently defect-free to exhibit band edge luminescence.  相似文献   

12.
Pure and europium (Eu(3+)) doped cerium dioxide (CeO(2)) nanocrystals have been synthesized by a novel oil-in-water microemulsion reaction method under soft conditions. In-situ X-ray diffraction and RAMAN spectroscopy, high-resolution transmission electron microscopy, UV/Vis diffuse-reflectance and Fourier transform infrared spectroscopy as well as time-resolved photoluminescence spectroscopy were used to characterize the nanaocrystals. The as-synthesized powders are nanocrystalline and have a narrow size distribution centered on 3 nm and high surface area of ~250 m(2) g(-1). Only a small fraction of the europium ions substitutes for the bulk, cubic Ce(4+) sites in the europium-doped ceria nanocrystals. Upon calcination up to 1000 °C, a remarkable high surface area of ~120 m(2) g(-1) is preserved whereas an enrichment of the surface Ce(4+) relative to Ce(3+) ions and relative strong europium emission with a lifetime of ~1.8 ms and FWHM as narrow as 10 cm(-1) are measured. Under excitation into the UV and visible spectral range, the europium doped ceria nanocrystals display a variable emission spanning the orange-red wavelengths. The tunable emission is explained by the heterogeneous distribution of the europium dopants within the ceria nanocrystals coupled with the progressive diffusion of the europium ions from the surface to the inner ceria sites and the selective participation of the ceria host to the emission sensitization. Effects of the bulk-doping and impregnation with europium on the ceria host structure and optical properties are also discussed.  相似文献   

13.
Platinum-catalyzed synthesis of water-soluble gold-platinum nanoparticles   总被引:2,自引:0,他引:2  
The ability to control composition and size in the synthesis of bimetallic nanoparticles is important for the exploitation of the bimetallic catalytic properties. This paper reports findings of an investigation of a new approach to the synthesis of gold-platinum (AuPt) bimetallic nanoparticles in aqueous solution via one-phase reduction of AuCl(4-) and PtCl(4)(2-) using a combination of reducing and capping agents. Hydrogen served as a reducing agent for the reduction of Pt(II), whereas acrylate was used as a reducing agent for the reduction of Au(III). The latter reaction was found to be catalyzed by the formation of Pt as a result of the reduction of Pt(II). Acrylate also functioned as capping agent on the resulting nanocrystals. By controlling the feed ratios of AuCl(4-) and PtCl(4)(2-) and the relative concentrations of acrylate, an effective route for the preparation of AuPt nanoparticles with bimetallic compositions ranging from approximately 4 to 90% Au and particle sizes ranging from 2 to 8 nm has been demonstrated. The composition, size, and shell properties were characterized using transmission electron microscopy, direct current plasma-atomic emission spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. Implications of the results to the exploration of bifunctional catalysts are also briefly discussed.  相似文献   

14.
Femtosecond pump-probe absorption spectroscopy is used to investigate the role of Er(3+) dopants in the early relaxation pathways of photoexcited Si nanocrystals. The fate of photoexcited electrons in three different Si nanostructures was studied and correlated with the effect of Er-doping and the nature of the dopant architecture. In Si nanocrystals without Er(3+) dopant, a trapping component was identified to be a major electron relaxation mechanism. Addition of Er(3+) ions into the core or surface shell of the nanocrystals was found to open up additional nonradiative relaxation pathways, which is attributed to Er-induced trap states in the Si host. Analysis of the photodynamics of the Si nanocrystal samples reveals an electron trapping mechanism involving trap-to-trap hopping in the doped nanocrystals, whereby the density of deep traps seem to increase with the presence of erbium. To gain additional insights on the relative depths of the trapping sites on the investigated nanostructures, benzoquinone was used as a surface adsorbed electron acceptor to facilitate photoinduced electron transfer across the nanocrystal surface and subsequently assist in back electron transfer. The established reduction potential (-0.45 V versus SCE) of the electron acceptor helped reveal that the erbium-doped nanocrystal samples have deeper trapping sites than the undoped Si. Furthermore, the measurements indicate that internally Er-doped Si have relatively deeper trapping sites than the erbium surface-enriched nanocrystals. The electron-shuttling experiment also reveals that the back electron transfer seems not to recover completely to the ground state in the doped Si nanocrystals, which is explained by a mechanism whereby the electrons are captured by deep trapping sites induced by erbium addition in the Si lattice.  相似文献   

15.
采用水热方法合成了3种Cu(Ⅱ/Ⅰ)配聚物及超分子, (1) [K2Cu2(ox)(btec)(MeOH)2]n, (2) {[Cu(pdc)(H2O)2]?H2O}n, (3) [Cu(cyan)(phen)]?H2O (H2ox: 草酸, H4btec: 均苯四甲酸, MeOH: 甲醇, H2pdc: 2, 5-吡啶二羧酸, phen: 邻菲啰啉, Hcyan: 氰尿酸). 通过X射线单晶衍射、表面光电压光谱(SPS)、固体紫外-可见(UV-Vis)、傅里叶变换红外(FTIR)光谱、元素分析等方法对配合物进行了表征. 结构解析结果表明, 配合物(1)是具有三维(3D)无限结构的配聚物; (2)是具有二维(2D)无限结构的配聚物, 但又通过氢键进一步连成了三维(3D)网络, (1)与(2)的中心金属均为Cu(II)离子; (3)为含Cu(I)的单核配合物, 但又通过氢键和π-π堆积作用, 使它成为2D超分子化合物. 配合物SPS结果显示, 配合物(1)-(3)在300-800 nm范围内都呈现光伏响应, 表明三者均具有一定的光电转换能力. 讨论了配合物的组成、结构、维数、配体种类、中心金属离子价态及配位微环境对SPS的影响,并将SPS与UV-Vis 光谱进行了关联.  相似文献   

16.
When water is heated and pressurized above the critical point, it becomes a suitable solvent to employ organic capping ligands to control and stabilize the synthesis of nanocrystals. Without alkanethiol ligands, Cu(NO(3))(2) hydrolyzes to form polydisperse copper(II) oxide particles with diameters from 10 to 35 nm. However, in the presence of 1-hexanethiol, X-ray photoelectron spectroscopy, selected area electron diffraction, and transmission electron microscopy reveal the formation of copper nanocrystals approximately 7 nm in diameter. The use of a different precursor, Cu(CH(3)COO)(2), leads to particles with significantly different morphologies. A mechanism is proposed for sterically stabilized nanocrystal growth in supercritical water that describes competing pathways of hydrolysis to large oxidized copper particles versus ligand exchange and arrested growth by thiols to produce small monodisperse Cu nanoparticles.  相似文献   

17.
以钛酸四丁酯为前驱体,乙醇为溶剂,月桂酸和十二胺为共同稳定剂,采用溶剂热法制备了不同形状的锐钛矿型二氧化钛纳米晶。利用透射电子显微镜(TEM)、选区电子衍射(SAED)、X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱和热失重-差热分析(TG-DTA)等技术对纳米晶的结构、尺寸、形貌及形状进行了系统的表征,并探讨了月桂酸与十二胺不同配比时纳米晶的形状演化规律。结果表明:用溶剂热法在不同配比情况下获得的二氧化钛均为锐钛矿相;在月桂酸与十二胺总摩尔量不变的情况下,随着十二胺含量的增加,二氧化钛纳米晶的形状由球形逐渐演化为棒状,且结晶化程度在两者摩尔比为1:1时最好;月桂酸与十二胺稳定剂与纳米晶内核之间以桥接配位体的形式结合,且稳定剂在样品中的含量约为5%。  相似文献   

18.
Colloidal cobalt-doped TiO(2) (anatase) nanocrystals were synthesized and studied by electronic absorption, magnetic circular dichroism, transmission electron microscopy, magnetic susceptibility, cobalt K-shell X-ray absorption spectroscopy, and extended X-ray absorption fine structure measurements. The nanocrystals were paramagnetic when isolated by surface-passivating ligands, weakly ferromagnetic (M(s) approximately 1.5 x 10(-)(3) micro(B)/Co(2+) at 300 K) when aggregated, and strongly ferromagnetic (up to M(s) = 1.9 micro(B)/Co(2+) at 300 K) when spin-coated into nanocrystalline films. X-ray absorption data reveal that cobalt is in the Co(2+) oxidation state in all samples. In addition to providing strong experimental support for the existence of intrinsic ferromagnetism in cobalt-doped TiO(2), these results demonstrate the possibility of using colloidal TiO(2) diluted magnetic semiconductor nanocrystals as building blocks for assembly of ferromagnetic semiconductor nanostructures with potential spintronics applications.  相似文献   

19.
A new type of amphiphilic ABC triblock copolymer, poly(acrylic acid)(33)-poly(styrene)(47)-poly(ethylene oxide)(113) (PAA(33)-PS(47)-PEO(113)), was designed to assist the synthesis of core/shell structured CdTe nanowires via a one-step synthetic route. The PAA block was adopted to capture cadmium ions as the precursor of CdTe. Due to the bivalent coordination of Cd(2+), the copolymer in dioxane/H(2)O formed micelles with Cd(2+)-polychelate cores. Then CdTe nanocrystals were obtained within the micelles after introduction of NaHTe into the micelle solution. Transmission electron microscopy experiments revealed that the CdTe nanocrystals obtained simultaneously formed "pearl-necklace" aggregates in solution possibly driven by dipole interactions between neighboring particles, and then single crystalline CdTe nanowires upon reflux. Accompanying this morphology change, a phase transition from cubic zinc blende to wurtzite structure was observed by selected-area electron diffraction. The aggregation of the PS block in dioxane with a certain amount of H(2)O enabled the PS blocks to form a densely packed shell on the CdTe nanowires whose typical size is 700-800 nm in length and 15-20 nm in width. The third block of PEO was employed to render the finally formed CdTe nanowires dispersibility.  相似文献   

20.
Micelle transformations upon metalation (i.e., incorporation of metal compounds and metal nanoparticle formation) in poly(methoxy hexa(ethylene glycol) methacrylate)-block-poly((2-(diethylamino)ethyl methacrylate)), PHEGMA-b-PDEAEMA, solutions have been studied using transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS). Three different methods for the formation of metalated micelles are compared: (A) dissolution of the block copolymers in pure water followed by incorporation of platinic acid (H(2)PtCl(6).6H(2)O), (B) micellization in acidic molecular solutions of block copolymers induced by interaction of the protonated amino groups with the PtCl(6)(2)(-) ions, and (C) incorporation of metal species in pH-induced micelles. The latter method leads to well-defined metalated micelles of 22-25 nm diameter containing nanoparticles with diameters of 1.3-1.5 nm. No nanoparticle aggregation is observed. Good agreement is obtained for the sizes of the platinic acid-containing micelles assessed by TEM and PCS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号