首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this paper is to investigate the multi-pulse global bifurcations and chaotic dynamics for the nonlinear non-planar oscillations of a cantilever beam subjected to a harmonic axial excitation and two transverse excitations at the free end by using an extended Melnikov method in the resonant case. First, the extended Melnikov method for studying the Shilnikov-type multi-pulse homoclinic orbits and chaos in high-dimensional nonlinear systems is briefly introduced in the theoretical frame. Then, this method is utilized to investigate the Shilnikov-type multi-pulse homoclinic bifurcations and chaotic dynamics for the nonlinear non-planar oscillations of the cantilever beam. How to employ this method to analyze the Shilnikov-type multi-pulse homoclinic bifurcations and chaotic dynamics of high-dimensional nonlinear systems in engineering applications is demonstrated through this example. Finally, the results of numerical simulation are given and also show that the Shilnikov-type multi-pulse chaotic motions can occur for the nonlinear non-planar oscillations of the cantilever beam, which verifies the analytical prediction.  相似文献   

2.
周期参数扰动的T混沌系统同宿轨道分析   总被引:1,自引:0,他引:1       下载免费PDF全文
惠小健  王震  孙卫 《物理学报》2013,62(13):130507-130507
针对一类周期参数扰动的T混沌系统, 通过变换将系统转化为具有广义Hamilton结构的周期参数扰动的慢变系统, 运用Melnikov方法对系统的同宿轨道进行了分析计算, 并给出了系统的同宿轨道参数分支条件. 同时, 通过数值实验, 对周期参数扰动控制策略及同宿轨道进行了仿真, 验证了文中理论分析的正确性. 关键词: Hamilton系统 Melnikov方法 同宿轨道 周期参数扰动  相似文献   

3.
We consider the damped and driven dynamics of two interacting particles evolving in a symmetric and spatially periodic potential. The latter is exerted to a time-periodic modulation of its inclination. Our interest is twofold: First, we deal with the issue of chaotic motion in the higher-dimensional phase space. To this end, a homoclinic Melnikov analysis is utilised assuring the presence of transverse homoclinic orbits and homoclinic bifurcations for weak coupling allowing also for the emergence of hyperchaos. In contrast, we also prove that the time evolution of the two coupled particles attains a completely synchronised (chaotic) state for strong enough coupling between them. The resulting "freezing of dimensionality" rules out the occurrence of hyperchaos. Second, we address coherent collective particle transport provided by regular periodic motion. A subharmonic Melnikov analysis is utilised to investigate persistence of periodic orbits. For directed particle transport mediated by rotating periodic motion, we present exact results regarding the collective character of the running solutions entailing the emergence of a current. We show that coordinated energy exchange between the particles takes place in such a manner that they are enabled to overcome--one particle followed by the other--consecutive barriers of the periodic potential resulting in collective directed motion.  相似文献   

4.
We develop criteria for detecting secondary intersections and tangencies of the stable and unstable manifolds of hyperbolic periodic orbits appearing in time-periodically perturbed one degree of freedom Hamiltonian systems. A function, called the "Secondary Melnikov Function" (SMF) is constructed, and it is proved that simple (resp. degenerate) zeros of this function correspond to transverse (resp. tangent) intersections of the manifolds. The theory identifies and predicts the rotary number of the intersection (the number of "humps" of the homoclinic orbit), the transition number of the homoclinic points (the number of periods between humps), the existence of tangencies, and the scaling of the intersection angles near tangent bifurcations perturbationally. The theory predicts the minimal transition number of the homoclinic points of a homoclinic tangle. This number determines the relevant time scale, the minimal stretching rate (which is related to the topological entropy) and the transport mechanism as described by the TAM, a transport theory for two-dimensional area-preserving chaotic maps. The implications of this theory on the study of dissipative systems have yet to be explored. (c) 1995 American Institute of Physics.  相似文献   

5.
We summarize various cases where chaotic orbits can be described analytically. First we consider the case of a magnetic bottle where we have non-resonant and resonant ordered and chaotic orbits. In the sequence we consider the hyperbolic Hénon map, where chaos appears mainly around the origin, which is an unstable periodic orbit. In this case the chaotic orbits around the origin are represented by analytic series (Moser series). We find the domain of convergence of these Moser series and of similar series around other unstable periodic orbits. The asymptotic manifolds from the various unstable periodic orbits intersect at homoclinic and heteroclinic orbits that are given analytically. Then we consider some Hamiltonian systems and we find their homoclinic orbits by using a new method of analytic prolongation. An application of astronomical interest is the domain of convergence of the analytical series that determine the spiral structure of barred-spiral galaxies.  相似文献   

6.
Nonlinear autonomous dynamical systems with ahomoclinic tangency to a periodic orbit are investigated. We study the bifurcation sequences of the mixed-mode oscillations generated by the homoclinicity, which are shown to belong to two different types, depending on the nature of the Liapunov numbers of the basic periodic orbit. A detailed numerical analysis is carried out to show how the existence of a tangent homoclinic orbit allows us to understand in a quantitative way a particular and regular sequence of cool flame-ignition oscillations observed in a thermokinetic model of hydrocarbon oxidation. Chaotic cool flame oscillations are also observed in the same model. When the control parameter crosses a critical value, this chaotic set of trajectories becomes globally unstable and forms a Cantor-like hyperbolic repellor, and the ignition mechanism generates ahomoclinic tangency to the Cantor set of trajectories. The complex bifurcation diagram may be globally reconstructed from a one-dimensional dynamical system, thanks to the strong contractivity of thermokinetics. It is found that a symbolic dynamics with three symbols is necessary to classify the periodic windows of the complex bifurcation sequence observed numerically in this system.  相似文献   

7.
This paper investigates the multi-pulse global bifurcations and chaotic dynamics for the nonlinear, non-planar oscillations of the parametrically excited viscoelastic moving belt using an extended Melnikov method in the resonant case. Using the Kelvin-type viscoelastic constitutive law and Hamilton's principle, the equations of motion are derived for the viscoelastic moving belt with the external damping and parametric excitation. Applying the method of multiple scales and Galerkin's approach to the partial differential governing equation, the four-dimensional averaged equation is obtained for the case of 1:1 internal resonance and primary parametric resonance. From the averaged equations obtained, the theory of normal form is used to derive the explicit expressions of normal form with a double zero and a pair of pure imaginary eigenvalues. Based on the explicit expressions of normal form, the extended Melnikov method is used for the first time to investigate the Shilnikov-type multi-pulse homoclinic bifurcations and chaotic dynamics. The paper demonstrates how to employ the extended Melnikov method to analyze the Shilnikov-type multi-pulse homoclinic bifurcations and chaotic dynamics of high-dimensional nonlinear systems in engineering applications. Numerical simulations show that for the nonlinear non-planar oscillations of the viscoelastic moving belt, the Shilnikov-type multi-pulse chaotic motions can occur. Overall, both theoretical and numerical studies suggest that the chaos for the Smale horseshoe sense in motion exists.  相似文献   

8.
Depending on the parameters of a parametrically forced pendulum system the boundaries of subharmonic and homoclinic bifurcations are calculated on the basis of the Melnikov method and of averaging methods. It is shown that, as a parameter is varied, repeated resonances of successively higher periods occur culminating in homoclinic orbits. According to the theorem of Smale homoclinic bifurcation is the source of the unstable chaotic motions observed. For some selected parameter sets the theoretical predictions are tested by numerical calculations. Very good agreement is found between analytical and numerical results.  相似文献   

9.
The chaotic coherent atomic tunneling between two periodically driven and weakly coupled Bose-Einstein condensates has been investigated. The perturbed correction to the homoclinic orbit is constructed and its boundedness conditions are established that contain the Melnikov criterion for the onset of chaos. We analytically reveal that the chaotic coherent atomic tunneling is deterministic but not predictable. Our numerical calculation shows good agreement with the analytical result and exhibits nonphysically numerical instability. By adjusting the initial conditions, we propose a method to control the unboundedness, which leads the quantum coherent atomic tunneling to predictable periodical oscillation.  相似文献   

10.
In this work, we study a blinking vortex-uniform stream map. This map arises as an idealized, but essential, model of time-dependent convection past concentrated vorticity in a number of fluid systems. The map exhibits a rich variety of phenomena, yet it is simple enough so as to yield to extensive analytical investigation. The map's dynamics is dominated by the chaotic scattering of fluid particles near the vortex core. Studying the paths of fluid particles, it is seen that quantities such as residence time distributions and exit-vs-entry positions scale in self-similar fashions. A bifurcation is identified in which a saddle fixed point is created upstream at infinity. The homoclinic tangle formed by the transversely intersecting stable and unstable manifolds of this saddle is principally responsible for the observed self-similarity. Also, since the model is simple enough, various other properties are quantified analytically in terms of the circulation strength, stream velocity, and blinking period. These properties include: entire hierarchies of fixed points and periodic points, the parameter values at which these points undergo conservative period-doubling bifurcations, the structure of the unstable manifolds of the saddle fixed and periodic points, and the detailed structure of the resonance zones inside the vortex core region. A connection is made between a weakly dissipative version of our map and the Ikeda map from nonlinear optics. Finally, we discuss the essential ingredients that our model contains for studying how chaotic scattering induced by time-dependent flow past vortical structures produces enhanced diffusivities. (c) 1995 American Institute of Physics.  相似文献   

11.
We consider a quadratic Liénard equation with an unbounded homoclinic loop, which is a solution tending in forward and backward time to a non-hyperbolic equilibrium point located at infinity. Under small time-periodic perturbation, this equilibrium becomes a normally hyperbolic line of singularities at infinity. We show that the perturbed system may present homoclinic bifurcations, leading to the existence of transverse intersections between the stable and unstable manifolds of such a normally hyperbolic line of singularities. The global study concerning the infinity is performed using the Poincaré compactification in polar coordinates, from which we obtain a system defined on a set equivalent to a solid torus in R3, whose boundary plays the role of the infinity. The transversality of the manifolds is proved using the Melnikov method and implies, via the Birkhoff-Smale Theorem, a complex dynamical behaviour of the perturbed system solutions in the finite part of the phase space. Numerical simulations are performed in order to illustrate this behaviour, which could be called “the chaos arising from infinity”, since it depends on the global structure of the Liénard equation, including the points at infinity. Although applied to a particular case, the analysis presented provides a geometrical approach to study periodic perturbations of homoclinic (or heteroclinic) loops to infinity of any planar polynomial vector field.  相似文献   

12.
本文研究了运动光格中原子间呈排斥作用的玻色-爱因斯坦凝聚系统的混沌时空动力学。通过理论分析,我们得到了具有简单零点的Melnikov函数,这表明系统存在Smale马蹄混沌。数值模拟显示,在一定的参数条件下,光格势强度的增大或s波散射长度的减小,都将迫使系统由规则状态进入混沌状态。  相似文献   

13.
We have obtained a general unstable chaotic solution of a typical nonlinear oscillator in a double potential trap with weak periodic perturbations by using the direct perturbation method. Theoretical analysis reveals that the stable periodic orbits are embedded in the Melnikov chaotic attractors. The corresponding chaotic region and orbits in parameter space are described by numerical simulations.  相似文献   

14.
In perturbations of integrable two degree of freedom Hamiltonian systems, the invariant (KAM) tori are typically separated by zones of instability or resonance bands inhabited by elliptic and hyperbolic periodic orbits and homoclinic orbits. We indicate how the Melnikov method or the method of averaging can asymptotically predict the widths of these bands in specific cases and we compare these predictions with numerical computations for a pair of linearly coupled simple pendula. We conclude that, even for low order resonances, the first order asymptotic results are generally useful only for very small coupling (ε10-4).  相似文献   

15.
In this paper we discuss the control of complex spatio-temporal dynamics in a spatially extended nonlinear system (fluid model of Pierce diode) based on the concepts of controlling chaos in the systems with few degrees of freedom. A presented method is connected with stabilization of unstable homogeneous equilibrium state and the unstable spatio-temporal periodical states analogous to unstable periodic orbits of chaotic dynamics of the systems with few degrees of freedom. We show that this method is effective and allows to achieve desired regular dynamics chosen from a number of possible in the considered system.  相似文献   

16.
The dynamical behaviour of a reduced form of the perturbed generalized Korteweg–de Vries and Kadomtsev–Petviashvili equations (extension of the Korteweg–de Vries equation to two space variables) are studied in this paper. Harmonic solutions of non-resonance and primary resonance are obtained using the perturbation method. Chaotic motion under harmonic excitations is studied using the Melnikov method.A wide range of solutions for the reduced perturbed generalized Korteweg–de Vries equations, in which non-linear phenomena appearing within transition from regular harmonic response (periodic solutions) to chaotic motion, are obtained using the time integration Runge–Kutta method. When chaos is found, it is detected by examining the phase plane, the Poincaré map, the sensitivity solution of the solution to initial conditions, and by calculating the largest Lyapunov exponent.  相似文献   

17.
《Physics letters. A》2002,295(4):220-225
We investigate transitions between the chaotic and regular states through a perturbed chaotic solution of a rf-driven Josephson system. It is shown that the transition from order to chaos may occur when the system initially near the heteroclinic points. The chaotic solution tends to an unstable periodic one for the initial values sufficiently nearing the heteroclinic orbit but going beyond the heteroclinic points. Thus the Josephson chaos can be analytically and numerically controlled, by adjusting the initial conditions.  相似文献   

18.
一类相对转动非线性动力系统的混沌运动   总被引:1,自引:0,他引:1       下载免费PDF全文
时培明  刘彬  侯东晓 《物理学报》2008,57(3):1321-1328
研究一类具有同宿轨道、异宿轨道的相对转动非线性动力系统的混沌运动. 建立具有非线性刚度、非线性阻尼和外扰激励作用的一类两质量相对转动非线性动力系统的动力学方程. 利用Melnikov方法讨论了系统的全局分岔和系统进入混沌状态的可能途径,给出了系统发生混沌的必要条件,并利用最大Lyapunov指数图,分岔图,Poincare截面图和相轨迹图进一步分析了系统的混沌行为. 关键词: 相对转动 非线性动力系统 混沌 Melnikov方法  相似文献   

19.
In this article, we illustrate, through numerical simulations, some important aspects of the dynamics of the periodically perturbed homoclinic solutions for a dissipative saddle. More explicitly, we demonstrate that, when homoclinic tangles are created, three different dynamical phenomena, namely, horseshoes, periodic sinks, and attractors with Sinai-Ruelle-Bowen measures, manifest themselves periodically with respect to the magnitude of the forcing function. In addition, when the stable and the unstable manifolds are pulled apart so as not to intersect, first, rank 1 attractors, then quasi-periodic attractors are added to the dynamical scene.  相似文献   

20.
Spatiotemporal dynamics of Bose-Einstein condensates in moving optical lattices have been studied. For a weak lattice potential, the perturbed correction to the heteroclinic orbit in a repulsive system is constructed. We find the boundedness conditions of the perturbed correction contain the Melnikov chaotic criterion predicting the onset of Smale-horseshoe chaos. The effect of the chemical potential on the spatiotemporal dynamics is numerically investigated. It is revealed that the variance of the chemical potential can lead the systems into chaos. Regulating the intensity of the lattice potential can efficiently suppress the chaos resulting from the variance of the chemical potential. And then the effect of the phenomenological dissipation is considered. Numerical calculation reveals that the chaos in the dissipative system can be suppressed by adjusting the chemical potential and the intensity of the lattice potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号