首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We study phase synchronization effects of chaotic oscillators with a type-I intermittency behavior. The external and mutual locking of the average length of the laminar stage for coupled discrete and continuous in time systems is shown and the mechanism of this synchronization is explained. We demonstrate that this phenomenon can be described by using results of the parametric resonance theory and that this correspondence enables one to predict and derive all zones of synchronization.  相似文献   

2.
The application of symbolic CTQ-analysis for studying synchronization of chaotic oscillations is considered. This approach differs substantially from its analogs since it makes it possible to diagnose and measure quantitatively the characteristics of intermittency regimes in synchronization of chaotic systems and, hence, to analyzer the temporal structure of synchronization. The application of the symbolic analysis apparatus based on the T alphabet to systems with phase locking and synchronization of time scales is demonstrated for the first time. As an example, a complex system of two mutually coupled nonidentical Rössler oscillators in the helical chaos regime with attractors having an ill-conditioned phase is considered. The results show that the method considered here makes it possible to reliably diagnose synchronism sooner than a phase locking and/or time-scale synchronization threshold is detected.  相似文献   

3.
An increase of the coupling strength in the system of two coupled R?ssler oscillators leads from a nonsynchronized state through phase synchronization to the regime of lag synchronization. The role of unstable periodic orbits in these transitions is investigated. Changes in the structure of attracting sets are discussed. We demonstrate that the onset of phase synchronization is related to phase-lockings on the surfaces of unstable tori, whereas transition from phase to lag synchronization is preceded by a decrease in the number of unstable periodic orbits.  相似文献   

4.
5.
6.
7.
We demonstrate the existence of phase synchronization of two chaotic rotators. Contrary to phase synchronization of chaotic oscillators, here the Lyapunov exponents corresponding to both phases remain positive even in the synchronous regime. Such frequency locked dynamics with different ratios of frequencies are studied for driven continuous-time rotators and for discrete circle maps. We show that this transition to phase synchronization occurs via a crisis transition to a band-structured attractor.  相似文献   

8.
Phase synchronization of chaotic oscillators   总被引:3,自引:0,他引:3  
  相似文献   

9.
10.
Fujino H  Ohtsubo J 《Optics letters》2000,25(9):625-627
Synchronization of fast chaotic oscillations of the order of gigahertz is experimentally observed in two external-cavity semiconductor lasers.  相似文献   

11.
12.
A point particle sliding freely on a two-dimensional surface of constant negative curvature (Hadamard-Gutzwiller model) exemplifies the simplest chaotic Hamiltonian system. Exploiting the close connection between hyperbolic geometry and the group SU(1,1)/⦅±1⦆, we construct an algorithm (symboliv dynamics), which generates the periodic orbits of the system. For the simplest compact Riemann surface having as its fundamental group the “octagon group”, we present an enumeration of more than 206 million periodic orbits. For the length of the nth primitive periodic orbit we find a simple expression in terms of algebraic numbers of the form m + √2n (m, nϵN are governed by a particular Beatty sequence), which reveals a strange arithmetical structure of chaos. Knowledge of the length spectrum is crucial for quantization via the Selberg trace formula (periodic orbit theory), which in turn is expected to unravel the mystery of quantum chaos.  相似文献   

13.
Phase synchronization in unidirectionally coupled chaotic ratchets   总被引:2,自引:0,他引:2  
We study chaotic phase synchronization of unidirectionally coupled deterministic chaotic ratchets. The coupled ratchets were simulated in their chaotic states and perfect phase locking was observed as the coupling was gradually increased. We identified the region of phase synchronization for the ratchets and show that the transition to chaotic phase synchronization is via an interior crisis transition to strange attractor in the phase space.  相似文献   

14.
We show the existence of phase synchronization in bi-directionally coupled deterministic chaotic ratchets. The coupled ratchets were simulated in their chaotic states. A transition from a regime where the phases rotate with different velocities to a synchronous state where the phase difference is bounded was observed as the coupling was increased. In addition, the region of synchronization in which the system is permanently phase locked was identified. In this regime, the transverse Lyapunov exponent corresponding to both phases remain positive. Our calculations show that the transition to a synchronized state occurs via a crisis transition to an attractor filling the whole phase space.  相似文献   

15.
We propose an analytical justification for phase synchronization of fractional differential equations. This justification is based upon a linear stability criterion for fractional differential equations. We then investigate the existence of phase synchronization in chaotic forced Duffing and Sprott-L fractional differential systems of equations. Our numerical results agree with those analytical justifications.  相似文献   

16.
《Physics letters. A》1999,264(4):289-297
Chaotically-spiking dynamics of Hindmarsh–Rose neurons are discussed based on a flexible definition of phase for chaotic flow. The phase synchronization of two coupled chaotic neurons is in fact the spike synchronization. As a multiple time-scale model, the coupled HR neurons have quite different behaviors from the Rössler oscillators only having single time-scale mechanism. Using such a multiple time-scale model, the phase function can detect synchronization dynamics that cannot be distinguished by cross-correlation. Moreover, simulation results show that the Lyapunov exponents cannot be used as a definite criterion for the occurrence of chaotic phase synchronization for such a system. Evaluation of the phase function shows its utility in analyzing nonlinear neural systems.  相似文献   

17.
双频驱动混沌系统的相同步和广义同步   总被引:1,自引:0,他引:1       下载免费PDF全文
吴玉喜  黄霞  高建  郑志刚 《物理学报》2007,56(7):3803-3812
研究了双频混沌信号驱动的混沌振子的广义同步和相同步问题.发现了反偏向的相同步和正偏向的广义同步,即响应振子可以优先与驱动强度弱的混沌信号达到相同步,而广义同步则先在驱动强的信号和响应振子间建立起来.对这些行为产生的动力学机理进行了详细地分析. 关键词: 相同步 广义同步 条件熵 平均频率  相似文献   

18.
A possibility of generalized synchronization between two parts of a spatially distributed system being in space-time chaos is demonstrated with the Ginzburg-Landau equation used as an example. Regions of the distributed system parameters at which the functional relationship is established between the parts of the system are determined.  相似文献   

19.
An outstanding problem in chaotic dynamics is to specify generating partitions for symbolic dynamics in dimensions larger than 1. It has been known that the infinite number of unstable periodic orbits embedded in the chaotic invariant set provides sufficient information for estimating the generating partition. Here we present a general, dimension-independent, and efficient approach for this task based on optimizing a set of proximity functions defined with respect to periodic orbits. Our algorithm allows us to obtain the approximate location of the generating partition for the Ikeda-Hammel-Jones-Moloney map.  相似文献   

20.
周期参数扰动的T混沌系统同宿轨道分析   总被引:1,自引:0,他引:1       下载免费PDF全文
惠小健  王震  孙卫 《物理学报》2013,62(13):130507-130507
针对一类周期参数扰动的T混沌系统, 通过变换将系统转化为具有广义Hamilton结构的周期参数扰动的慢变系统, 运用Melnikov方法对系统的同宿轨道进行了分析计算, 并给出了系统的同宿轨道参数分支条件. 同时, 通过数值实验, 对周期参数扰动控制策略及同宿轨道进行了仿真, 验证了文中理论分析的正确性. 关键词: Hamilton系统 Melnikov方法 同宿轨道 周期参数扰动  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号