首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a general scheme to describe particle kinetics in the case of incomplete Hamiltonian chaos when a set of islands of stability forms a complicated fractal space-time dynamics and when there is orbit stickiness to the islands' boundary. This kinetics is alternative to the "normal" Fokker-Planck-Kolmogorov equation. A new kinetic equation describes random wandering in the fractal space-time. Critical exponents of the anomalous kinetics are expressed through dynamical characteristics of a Hamiltonian using the renormalization group approach. Renormalization transformation has been applied simultaneously for space and time and fractional calculus has been exploited.  相似文献   

2.
Lévy flights and walks have been shown to arise in a broad spectrum of areas, leading to anomalous diffusion. Here we investigate their central role in some dynamical phenomena encountered in Hamiltonian systems with a mixed phase space. In particular we discuss, within the continuous time random walk (CTRW) framework, the possibility to obtain currents in Hamiltonian systems and how to manipulate them, and the effect of population exchange between islands of stability. The latter can be viewed as the classical counterpart of chaos-assisted tunneling.  相似文献   

3.
The spatiotemporal propagation of a momentum excitation on the finite Fermi-Pasta-Ulam lattices is investigated. The competition between the solitary wave and phonons gives rise to interesting propagation behaviors. For a moderate nonlinearity, the initially excited pulse may propagate coherently along the lattice for a long time in a solitary wave manner accompanied by phonon tails. The lifetime of the long-transient propagation state exhibits a sensitivity to the nonlinear parameter. The solitary wave decays exponentially during the final loss of stability, and the decay rate varying with the nonlinear parameter exhibits two different scaling laws. This decay is found to be related to the largest Lyapunov exponent of the corresponding Hamiltonian system, which manifests a transition from weak to strong chaos. The mean-free-path of the solitary waves is estimated in the strong chaos regime, which may be helpful to understand the origin of anomalous conductivity in the Fermi-Pasta-Ulam lattice.  相似文献   

4.
We present a direct link between manifestations of classical Hamiltonian chaos and quantum nonintegrability effects as they occur in quantum invariants. In integrable classical Hamiltonian systems, analytic invariants (integrals of the motion) can be constructed numerically by means of time averages of dynamical variables over phase-space trajectories, whereas in near-integrable models such time averages yield nonanalytic invariants with qualitatively different properties. Translated into quantum mechanics, the invariants obtained from time averages of dynamical variables in energy eigenstates provide a topographical map of the plane of quantized actions (quantum numbers) with properties which again depend sensitively on whether or not the classical integrability condition is satisfied. The most conspicuous indicator of quantum chaos is the disappearance of quantum numbers, a phenomenon directly related to the breakdown of invariant tori in the classical phase flow. All results are for a system consisting of two exchange-coupled spins with biaxial exchange and single-site anisotropy, a system with a nontrivial integrability condition.  相似文献   

5.
Molecular dynamics in restricted geometries is known to exhibit anomalous behaviour. Diffusion, translational or rotational, of molecules is altered significantly on confinement in restricted geometries. Quasielastic neutron scattering (QENS) offers a unique possibility of studying molecular motion in such systems. Both time scales involved in the motion and the geometry of motion can be studied using QENS. Molecular dynamics (MD) simulation not only provides insight into the details of the different types of motion possible but also does not suffer limitations of the experimental set-up. Here we report the effect of confinement on molecular dynamics in various restricted geometries as studied by QENS and MD simulations. An example where the QENS technique provided direct evidence of phase transition associated with change in the dynamical behaviour of the molecules is also discussed.   相似文献   

6.
《Physics Reports》2002,371(6):461-580
Chaotic dynamics can be considered as a physical phenomenon that bridges the regular evolution of systems with the random one. These two alternative states of physical processes are, typically, described by the corresponding alternative methods: quasiperiodic or other regular functions in the first case, and kinetic or other probabilistic equations in the second case. What kind of kinetics should be for chaotic dynamics that is intermediate between completely regular (integrable) and completely random (noisy) cases? What features of the dynamics and in what way should they be represented in the kinetics of chaos? These are the subjects of this paper, where the new concept of fractional kinetics is reviewed for systems with Hamiltonian chaos. Particularly, we show how the notions of dynamical quasi-traps, Poincaré recurrences, Lévy flights, exit time distributions, phase space topology prove to be important in the construction of kinetics. The concept of fractional kinetics enters a different area of applications, such as particle dynamics in different potentials, particle advection in fluids, plasma physics and fusion devices, quantum optics, and many others. New characteristics of the kinetics are involved to fractional kinetics and the most important are anomalous transport, superdiffusion, weak mixing, and others. The fractional kinetics does not look as the usual one since some moments of the distribution function are infinite and fluctuations from the equilibrium state do not have any finite time of relaxation. Different important physical phenomena: cooling of particles and signals, particle and wave traps, Maxwell's Demon, etc. represent some domains where fractional kinetics proves to be valuable.  相似文献   

7.
8.
We present a method of realizing anticontrol chaos in a quantum confined system consisting of N two-levelatoms within a cavity, using a time-delayed optic field. The delay time plays a construction and organization role forproducing temporal chaos, while the interaction between atoms and photons creates spatial chaos. The chaos is quitesensitive to small time delayed. The spectral decomposition of the Hamiltonian obtained by using projection methodologyreveals that evolution of the left eigenvectors shows quite complicated chaotic fashions. The method we proposed maybe easily tested in experiment, and provides a general method using a sort of driving optic field to achieve anticontrol ofchaos for quantum systems.  相似文献   

9.
The current status of experimental results on the beta decay of the free neutron is described. An analysis of these data shows that, within the present-day accuracy, the data are fully consistent with the Standard Model of electroweak interaction. At the same time, there exists the possibility of deviations from the Standard Model at a level of 1%. The possible violations due to the contributions of right-handed (W R ) bosons, as well as of leptoquark mechanisms introducing anomalous scalar and tensor terms in the effective weak-interaction Hamiltonian, which include the right-handed neutrinos, are estimated. In the last case, the analysis is performed by an analytic method that makes it possible to take into account, for the first time, the possibility of CP violation.  相似文献   

10.
The relation between chaotic dynamics of nonlinear Hamiltonian systems and equilibrium statistical mechanics in its canonical ensemble formulation has been investigated for two different nonlinear Hamiltonian systems. We have compared time averages obtained by means of numerical simulations of molecular dynamics type with analytically computed ensemble averages. The numerical simulation of the dynamic counterpart of the canonical ensemble is obtained by considering the behavior of a small part of a given system, described by a microcanonical ensemble, in order to have fluctuations of the energy of the subsystem. The results for the Fermi-Pasta-Ulam model (i.e., a one-dimensional anharmonic solid) show a substantial agreement between time and ensemble averages independent of the degree of stochasticity of the dynamics. On the other hand, a very different behavior is observed for a chain of weakly coupled rotators, where linear exchange effects are absent. In the high-temperature limit (weak coupling) we have a strong disagreement between time and ensemble averages for the specific heat even if the dynamics is chaotic. This behavior is related to the presence of spatially localized chaos, which prevents the complete filling of the accessible phase space of the system. Localized chaos is detected by the distribution of all the characteristic Liapunov exponents.  相似文献   

11.
In this work we investigate Hamiltonian chaos using elementary Riemannian geometry. This is possible because the trajectories of a standard Hamiltonian system (i.e., having a quadratic kinetic energy term) can be seen as geodesics of the configuration space manifold equipped with the standard Jacobi metric. The stability of the dynamics is tackled with the Jacobi-Levi-Civita equation (JLCE) for geodesic spread and is applied to the case of a two degrees of freedom Hamiltonian. A detailed comparison is made among the qualitative informations given by Poincare sections and the results of the geometric investigation. Complete agreement is found. The solutions of the JLCE are also in quantitative agreement with the solutions of the tangent dynamics equation. The configuration space manifold associated to the Hamiltonian studied here is everywhere of positive curvature. However, curvature is not constant and its fluctuations along the geodesics can yield parametric instability of the trajectories, thus chaos. This mechanism seems to be one of the most effective sources of chaotic instabilities in Hamiltonians of physical interest, and makes a major difference with Anosov flows, and, in general, with abstract geodesic flows of ergodic theory. (c) 1995 American Institute of Physics.  相似文献   

12.
We construct a prototypical example of a spatially-open autonomous Hamiltonian system in which localised, but otherwise unbiased, ensembles of initial conditions break spatio-temporal symmetries in the subsequent ensemble dynamics, despite time reversal symmetry of the equations of motion. Together with transient chaos, this provides the mechanism for the occurrence of a current. Transporting trajectories pass through transient chaos and subsequently cross surfaces of no-return, after which they perform solely regular motion so that the current is of continual ballistic nature.  相似文献   

13.
A mechanism of emergence of Hamiltonian chaos is considered for the model describing the interaction between two-level atoms and their own radiation field in an ideal single-mode cavity. The analysis of the semiclassical Maxwell-Bloch equations shows that the Hamiltonian terms that are neglected in the rotating-wave approximation (RWA) give rise to the formation of a stochastic layer near the RWA-system separatrix. The Mel’nikov method is used to prove that the splitting of the separatrix takes place for arbitrarily small vacuum Rabi frequencies ΩN. The computation of Poincare sections shows that the stochastic layer, which is exponentially narrow for small Ω N, expands with increasing ΩN, and at ΩN ? 1, the system exhibits global chaos that manifests itself in irregular oscillation of the atomic population inversion and the broadening of the power spectrum. Promising candidates for observing manifestations of dynamic chaos in this basic quantum-optical system are Rydberg atoms placed in a high-Q superconducting microwave cavity.  相似文献   

14.
We consider ray propagation in a waveguide with a designed sound-speed profile perturbed by a range-dependent perturbation caused by internal waves in deep ocean environments. The Hamiltonian formalism in terms of the action and angle variables is applied to study nonlinear ray dynamics with two sound-channel models and three perturbation models: a single-mode perturbation, a randomlike sound-speed fluctuations, and a mixed perturbation. In the integrable limit without any perturbation, we derive analytical expressions for ray arrival times and timefronts at a given range, the main measurable characteristics in field experiments in the ocean. In the presence of a single-mode perturbation, ray chaos is shown to arise as a result of overlapping nonlinear ray-medium resonances. Poincare maps, plots of variations of the action per ray cycle length, and plots with rays escaping the channel reveal inhomogeneous structure of the underlying phase space with remarkable zones of stability where stable coherent ray clusters may be formed. We demonstrate the possibility of determining the wavelength of the perturbation mode from the arrival time distribution under conditions of ray chaos. It is surprising that coherent ray clusters, consisting of fans of rays which propagate over long ranges with close dynamical characteristics, can survive under a randomlike multiplicative perturbation modelling sound-speed fluctuations caused by a wide spectrum of internal waves.  相似文献   

15.
We present a new dynamical calculation about the Friedman-Robertson-Walker universe considered as an autonomous Hamiltonian. The time evolution of this Hamiltonian presents numerical instabilities so we apply a symplectic integration via infinitesimal canonical transformations of the phase space time evolution that preserves the Poincaré invariant. In this way, we have also obtained a sensitive improvement in the accuracy of the Hamiltonian constraint, as well as in the computing time. We confirm our previous results; in a spatially closed universe, the route to chaos is reached by sucessive breakage of the resonant tori due to the action of 11 resonances.  相似文献   

16.
针对永磁同步风力发电系统的混沌运动现象, 提出了基于系统Hamilton模型的H控制方案, 使得系统脱离混沌, 运行稳定. 首先将永磁同步风力发电系统模型经过一系列状态变换, 转化为类Lorenz经典数学模型, 并验证了系统在一定参数区域内存在混沌现象. 随后基于Hamilton系统充分利用系统物理结构和无需补偿“无功力”的优点, 建立了混沌系统的Hamilton模型, 并考虑了系统存在外扰情况下的H控制方法. 本文所设计的控制器  相似文献   

17.
保守系统的混沌控制   总被引:8,自引:0,他引:8  
保守系统的混沌控制是一个重要而富有挑战性的研究课题。由于Liouville定理的限制和初始条件的特殊作用,使得适用于耗散系统的混沌控制方法不能直接用于保守系统。本文通过对耗散系统和保守系统混沌运动的特征进行分析和比较,阐述了保守系统混沌运动的规律,总结了近期研究过程中一些典型的基本理论和方法,综述了近年来保守系统混沌控制的相关进展和我们在保守系统的混沌控制方面所做的工作,并对保守系统混沌控制的应用和发展方向进行了展望。  相似文献   

18.
Computer simulations are presented for a new object of chaos, stochastic jets, for a steady flow with five-fold symmetry with the Beltrami property. Lagrangian chaos of streamlines can reveal itself in the existence of huge flights which is connected with the asymptotic laws of anomalous transport of passive particles.  相似文献   

19.
We provide a new insight into the relationship between the geometric property of the potential energy surface and chaotic behavior of 2D Hamiltonian dynamical systems, and give an indicator of chaos based on the geometric property of the potential energy surface by defining Mean Convex Index (MCI). We also discuss a model of unstable Hamiltonian in detail, and show our results in good agreement with HBLSL's (Horwitz, Ben Zion, Lewkowicz, Schiffer and Levitan) new Riemannian geometric criterion.  相似文献   

20.
S. V. Prants 《JETP Letters》2002,75(12):651-658
A semiclassical study is carried out of the nonlinear interaction dynamics between two-level atoms and a standing-wave field in a high-finesse cavity. As a result of atomic movement or wave amplitude modulation, a dynamic local instability occurs in a strongly coupled atom-field system. The appearance of dynamical Hamiltonian chaos, fractals, and Lévy flights is demonstrated for the models of two experimental devices: a (micro)maser with thermal Rydberg atoms and a microlaser with cold atoms. Numerical simulation showed that the manifestations of classical chaos, atomic fractals, and flights can be observed in the appropriate real experiments. Attention is drawn to the prospects provided by work on the atom-field systems in the coupling-modulated high-finesse cavities for further investigation of the quantum-classical correspondence, quantum chaos, and decoherence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号