首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Reacting flow fields are often subject to unsteadiness due to flow, reaction, diffusion, and acoustics. Further, flames can also exhibit inherent unsteadiness caused by various intrinsic instabilities. Interaction between various unsteady processes across multiple scales often makes combustion dynamics complex. Characterizing such complex dynamics is essential to ensure the safe and reliable operation of high efficiency combustion systems. Tools from nonlinear dynamics and complex systems theory provide new perspectives to analyze and interpret the data from real systems. They could also provide new ways of monitoring and controlling combustion systems. We discuss recent advances in studying unsteady combustion dynamics using the tools from dynamical systems theory and complex systems theory. We cover a range of problems involving unsteady combustion such as thermoacoustic instability, flame blowout, fire propagation, reaction chemistry and flow flame interaction.  相似文献   

2.
The strong compression TFTR discharge has been segmented into regions where linear dynamics can approximate the plasma's interaction with the OH and EF power supply systems. The dynamic equations for these regions are utilized within the linear optimal control theory framework to provide active feedback gains to control the plasma position and current. Methods are developed to analyze and quantitatively evaluate the quality of control in a nonlinear, more realistic simulation. Tests are made of optimal control theory's assumptions and requirements, and the feasibility of this method for TFTR is assessed.  相似文献   

3.
We combine molecular dynamics simulations and density functional theory to analyze the electrical structure and transmission probability in four different DNA sequences under physiological conditions. The conductance in these sequences is primarily controlled by interstrand and intrastrand coupling between low-energy guanine orbitals. Insertion of adenine-thymine base pairs between the guanine-cytosine rich domains acts as a tunneling barrier. Our theory explains recent length dependent conductance data for individual DNA molecules in water.  相似文献   

4.
Folding and unfolding processes are important for the functional capability of polypeptides and proteins. In contrast with a physiological environment (solvated or condensed phases), an in?vacuo study provides well-defined "clean room" conditions to analyze the intramolecular interactions that largely control the structure, stability, and folding or unfolding dynamics. Here we show that a proper consideration of van der Waals (vdW) dispersion forces in density-functional theory (DFT) is essential, and a recently developed DFT+vdW approach enables long time-scale ab?initio molecular dynamics simulations at an accuracy close to "gold standard" quantum-chemical calculations. The results show that the inclusion of vdW interactions qualitatively changes the conformational landscape of alanine polypeptides, and greatly enhances the thermal stability of helical structures, in agreement with gas-phase experiments.  相似文献   

5.
The present theoretical understanding of various properties of superionic conductors is reviewed. Emphasis is put on their treatment as classical many-particle systems and on the analysis of their dynamic behaviour. Different kinds of approaches pertaining to the low frequency dynamics are considered in detail. They include stochastic models, like hopping or Fokker-Planck models as well as a hydrodynamic theory. The high frequency (phonon-) dynamics and the information obtained from computer simulations is also analysed. As far as possible, the relevance of the different approaches with respect to experiments on specific materials is discussed. Possible directions for future investigations are outlined.  相似文献   

6.
Stochastic approaches to complex dynamical systems have recently provided broader insights into spatial-temporal aspects of epileptic brain dynamics. Stochastic qualifiers based on higher-order Kramers-Moyal coefficients derived directly from time series data indicate improved differentiability between physiological and pathophysiological brain dynamics. It remains unclear, however, to what extent stochastic qualifiers of brain dynamics are affected by other endogenous and/or exogenous influencing factors. Addressing this issue, we investigate multi-day, multi-channel electroencephalographic recordings from a subject with epilepsy. We apply a recently proposed criterion to differentiate between Langevin-type and jump-diffusion processes and observe the type of process most qualified to describe brain dynamics to change with time. Stochastic qualifiers of brain dynamics are strongly affected by endogenous and exogenous rhythms acting on various time scales—ranging from hours to days. Such influences would need to be taken into account when constructing evolution equations for the epileptic brain or other complex dynamical systems subject to external forcings.  相似文献   

7.
We investigate the transport behavior of finite modular quantum systems. Such systems have recently been analyzed by different methods. These approaches indicate diffusive behavior even and especially for finite systems. Inspired by these results we analyze analytically and numerically if and in which sense the dynamics of those systems are in agreement with an appropriate Boltzmann equation. We find that the transport behavior of a certain type of finite modular quantum systems may indeed be described in terms of a Boltzmann equation. However, the applicability of the Boltzmann equation appears to be rather limited to a very specific type of model.  相似文献   

8.
In this paper, a scheme is put forward to design pulses which drive a three‐level system based on the reverse engineering with Lewis‐Riesenfeld invariant theory. The scheme can be applied to a three‐level system even when the rotating‐wave approximation (RWA) can not be used. The amplitudes of pulses and the maximal values of detunings in the system could be easily controlled by adjusting control parameters. We analyze the dynamics of the system by an invariant operator, so additional couplings are unnecessary. Moreover, the approaches to avoid singularity of pulses are studied and several useful results are obtained. We hope the scheme could contribute to fast quantum information processing without RWA.  相似文献   

9.
Maintained by environmental fluxes, biological systems are thermodynamic processes that operate far from equilibrium without detailed-balanced dynamics. Yet, they often exhibit well defined nonequilibrium steady states (NESSs). More importantly, critical thermodynamic functionality arises directly from transitions among their NESSs, driven by environmental switching. Here, we identify the constraints on excess heat and dissipated work necessary to control a system that is kept far from equilibrium by background, uncontrolled “housekeeping” forces. We do this by extending the Crooks fluctuation theorem to transitions among NESSs, without invoking an unphysical dual dynamics. This and corresponding integral fluctuation theorems determine how much work must be expended when controlling systems maintained far from equilibrium. This generalizes thermodynamic feedback control theory, showing that Maxwellian Demons can leverage mesoscopic-state information to take advantage of the excess energetics in NESS transitions. We also generalize an approach recently used to determine the work dissipated when driving between functionally relevant configurations of an active energy-consuming complex system. Altogether, these results highlight universal thermodynamic laws that apply to the accessible degrees of freedom within the effective dynamic at any emergent level of hierarchical organization. By way of illustration, we analyze a voltage-gated sodium ion channel whose molecular conformational dynamics play a critical functional role in propagating action potentials in mammalian neuronal membranes.  相似文献   

10.
In recent years a number of new techniques have become available in nonequilibrium statistical mechanics, all derived from dynamical system theory, especially from the thermodynamic formalism of Ruelle. We focus here on periodic orbit theory, and we compare it with a novel approach proposed by Evans, Cohen, and Morriss, and developed further by Gallavotti and Cohen. We argue that the two approaches based on such theories are equivalent for systems of many particles if the underlying dynamics is similar to that of Anosov systems, and that such equivalence should remain in more general situations. We extend our previous explanation of irreversibility in the thermostatted Lorentz gas toN-particle diffusion and shearing systems.  相似文献   

11.
This paper discusses a number of issues relating to the analysis of uncertain systems or data in the context of (low-frequency) structural dynamics. In order to illustrate potential problems in applying ‘classical’ uncertainty analysis methods to nonlinear systems, a simple nonlinear system is simulated and the breakdown of two standard approaches is demonstrated on data from the system. By relaxing the requirements of the analysis, it is shown that an alternative uncertainty theory gives useful qualitative information about the system. This motivates a discussion of how uncertainty frameworks should be chosen to suit the problem in hand and leads to a clustering of uncertainty problems in structural dynamics into three types: quantification, fusion and propagation.  相似文献   

12.
Upon photoexcitation by a short light pulse, molecules can reach regions of the configuration space characterized by strong nonadiabaticity, where the motion of the nuclei is strongly coupled to the motion of the electrons. The subtle interplay between the nuclear and electronic degrees of freedom in such situations is rather challenging to capture by state-of-the-art nonadiabatic dynamics approaches, limiting therefore their predictive power. The Exact Factorization of the molecular wavefunction, though, offers new perspectives in the solution of this longstanding issue. Here, we investigate the performance of a mixed quantum/classical (MQC) limit of this theory, named Coupled Trajectory-MQC, which was shown to reproduce the excited-state dynamics of small systems accurately. The method is applied to the study of the photoinduced ring opening of oxirane and the results are compared with two other nonadiabatic approaches based on different Ansätze for the molecular wavefunction, namely Ehrenfest dynamics and Ab Initio Multiple Spawning (AIMS). All simulations were performed using linear-response time-dependent density functional theory. We show that the CT-MQC method can capture the (de)coherence effects resulting from the dynamics through conical intersections, in good agreement with the results obtained with AIMS and in contrast with ensemble Ehrenfest dynamics.  相似文献   

13.
We develop a semiclassical theory for spin-dependent quantum transport to describe weak (anti)localization in quantum dots with spin-orbit coupling. This allows us to distinguish different types of spin relaxation in systems with chaotic, regular, and diffusive orbital classical dynamics. We find, in particular, that for typical Rashba spin-orbit coupling strengths, integrable ballistic systems can exhibit weak localization, while corresponding chaotic systems show weak antilocalization. We further calculate the magnetoconductance and analyze how the weak antilocalization is suppressed with decreasing quantum dot size and increasing additional in-plane magnetic field.  相似文献   

14.
The varied cognitive abilities and rich adaptive behaviors enabled by the animal nervous system are often described in terms of information processing. This framing raises the issue of how biological neural circuits actually process information, and some of the most fundamental outstanding questions in neuroscience center on understanding the mechanisms of neural information processing. Classical information theory has long been understood to be a natural framework within which information processing can be understood, and recent advances in the field of multivariate information theory offer new insights into the structure of computation in complex systems. In this review, we provide an introduction to the conceptual and practical issues associated with using multivariate information theory to analyze information processing in neural circuits, as well as discussing recent empirical work in this vein. Specifically, we provide an accessible introduction to the partial information decomposition (PID) framework. PID reveals redundant, unique, and synergistic modes by which neurons integrate information from multiple sources. We focus particularly on the synergistic mode, which quantifies the “higher-order” information carried in the patterns of multiple inputs and is not reducible to input from any single source. Recent work in a variety of model systems has revealed that synergistic dynamics are ubiquitous in neural circuitry and show reliable structure–function relationships, emerging disproportionately in neuronal rich clubs, downstream of recurrent connectivity, and in the convergence of correlated activity. We draw on the existing literature on higher-order information dynamics in neuronal networks to illustrate the insights that have been gained by taking an information decomposition perspective on neural activity. Finally, we briefly discuss future promising directions for information decomposition approaches to neuroscience, such as work on behaving animals, multi-target generalizations of PID, and time-resolved local analyses.  相似文献   

15.
Synchronization in identical drive-response systems is a problem that can be cast in an observer design framework. In this paper we extend this approach by studying the analysis/design of partial synchronization by means of observer theory. In doing so, we introduce the concept of partial observer--an observer to reconstruct a part of the system state vector. It is also shown how the observability condition can be utilized to analyze the dynamics in an array of coupled identical systems.  相似文献   

16.
We present an extension of the density-functional theory (DFT) formalism for lattice gases to systems with internal degrees of freedom. In order to test approximations commonly used in DFT approaches, we investigate the statics and dynamics of occupation (density) profiles in the one-dimensional Potts model. In particular, by taking the exact functional for this model we can directly evaluate the quality of the local equilibrium approximation used in time-dependent density-functional theory (TDFT). Excellent agreement is found in comparison with Monte Carlo simulations. Finally, principal limitations of TDFT are demonstrated.  相似文献   

17.
Apnea and other breathing-related disorders have been linked to the development of hypertension or impairments of the cardiovascular, cognitive or metabolic systems. The combined assessment of multiple physiological signals acquired during sleep is of fundamental importance for providing additional insights about breathing disorder events and the associated impairments. In this work, we apply information-theoretic measures to describe the joint dynamics of cardiorespiratory physiological processes in a large group of patients reporting repeated episodes of hypopneas, apneas (central, obstructive, mixed) and respiratory effort related arousals (RERAs). We analyze the heart period as the target process and the airflow amplitude as the driver, computing the predictive information, the information storage, the information transfer, the internal information and the cross information, using a fuzzy kernel entropy estimator. The analyses were performed comparing the information measures among segments during, immediately before and after the respiratory event and with control segments. Results highlight a general tendency to decrease of predictive information and information storage of heart period, as well as of cross information and information transfer from respiration to heart period, during the breathing disordered events. The information-theoretic measures also vary according to the breathing disorder, and significant changes of information transfer can be detected during RERAs, suggesting that the latter could represent a risk factor for developing cardiovascular diseases. These findings reflect the impact of different sleep breathing disorders on respiratory sinus arrhythmia, suggesting overall higher complexity of the cardiac dynamics and weaker cardiorespiratory interactions which may have physiological and clinical relevance.  相似文献   

18.
19.
Model-independent chaos control techniques are inherently well-suited for the control of physiological systems for which quantitative system models are unavailable. The proportional perturbation feedback (PPF) control paradigm, which uses electrical stimulation to perturb directly the controlled system variable (e.g., the interbeat or interspike interval), was developed for excitable physiological systems that do not have an easily accessible system parameter. We develop the stable manifold placement (SMP) technique, a PPF-type technique which is simpler and more robust than the original PPF control algorithm. We use the SMP technique to control a simple geometric model of a chaotic system in the neighborhood of an unstable periodic orbit (UPO). We show that while the SMP technique can control a chaotic system that has UPO dynamics which are characterized by one stable manifold and one unstable manifold, the success of the SMP technique is sensitive to UPO parameter estimation errors. (c) 1997 American Institute of Physics.  相似文献   

20.
Motivated by novel results in the theory of complex adaptive systems, we analyze the dynamics of random walks in which the jumping probabilities are time dependent. We determine the survival probability in the presence of an absorbing boundary. For an unbiased walk, the survival probability is maximized in the case of large temporal oscillations in the jumping probabilities. On the other hand, a random walker who is drifted towards the absorbing boundary performs best with a constant jumping probability. We use the results to reveal the underlying dynamics responsible for the phenomenon of self-segregation and clustering observed in the evolutionary minority game.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号