首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We derive a family of singular iterated maps--closely related to Poincare maps--that describe chaotic interactions between colliding solitary waves. The chaotic behavior of such solitary-wave collisions depends on the transfer of energy to a secondary mode of oscillation, often an internal mode of the pulse. This map allows us to go beyond previous analyses and to understand the interactions in the case when this mode is excited prior to the first collision. The map is derived using Melnikov integrals and matched asymptotic expansions and generalizes a "multipulse" Melnikov integral. It allows one to find not only multipulse heteroclinic orbits, but exotic periodic orbits. The maps exhibit singular behavior, including regions of infinite winding. These maps are shown to be singular versions of the conservative Ikeda map from laser physics and connections are made with problems from celestial mechanics and fluid mechanics.  相似文献   

2.
马文聪  金宁德  高忠科 《物理学报》2012,61(17):170510-170510
本文利用动力学变换方法和庞加莱截面方法对两种连续混沌动力学系统进行不稳定周期轨道探测研究, 并对Lorenz系统进行了替代数据法检验.结果表明:基于庞加莱截面的动力学变换改进算法 可有效探测连续混沌动力学系统中的不稳定周期轨道.  相似文献   

3.
The spectra of quantized chaotic billiards from the point of view of scattering theory are discussed. It is shown how the spectral and resonance density functions both fluctuate about a common mean. A semiclassical treatment explains this in terms of classical scattering trajectories and periodic orbits of the Poincare scattering map. It is shown that this formalism provides an alternative derivation and a new interpretation of Gutzwiller's periodic orbits sum for the spectral density. Moreover, it is a convenient starting point for a derivation of a Riemann-Siegel "look alike" expression for the secular equation in terms of periodic orbits of finite length.  相似文献   

4.
We have investigated the appearance of chaos in the one-dimensional Newtonian gravitational three-body system (three masses on a line with -1/r pairwise potential). In the center of mass coordinates this system has two degrees of freedom and can be conveniently studied using Poincare sections. We have concentrated in particular on how the behavior changes when the relative masses of the three bodies change. We consider only the physically more interesting case of negative total energy. For two mass choices we have calculated 18 000 full orbits (with initial states on a 100x180 lattice on the Poincare section) and obtained dwell time distributions. For 105 mass choices we have calculated Poincare maps for 10x18 starting points. Our results show that the Poincare section (and hence the phase space) divides into three well defined regions with orbits of different characteristics: (1) There is a region of fast scattering, with a minimum of pairwise collisions. This region consists of 'scallops' bordering the E=0 line, within a scallop the orbits vary smoothly. The number of the scallops increases as the mass of the central particle decreases. (2) In the chaotic scattering region the interaction times are longer, and both the interaction time and the final state depend sensitively on the starting point on the Poincare section. For both (1) and (2) the initial and final states consist of a binary + single particle. (3) The third region consists of quasiperiodic orbits where the three masses are bound together forever. At the center of the quasiperiodic region there is a periodic orbit discovered (numerically) by Schubart in 1956. The stability of the Schubart orbit turns out to correlate strongly with the global behavior.  相似文献   

5.
一类相对转动非线性动力系统的混沌运动   总被引:1,自引:0,他引:1       下载免费PDF全文
时培明  刘彬  侯东晓 《物理学报》2008,57(3):1321-1328
研究一类具有同宿轨道、异宿轨道的相对转动非线性动力系统的混沌运动. 建立具有非线性刚度、非线性阻尼和外扰激励作用的一类两质量相对转动非线性动力系统的动力学方程. 利用Melnikov方法讨论了系统的全局分岔和系统进入混沌状态的可能途径,给出了系统发生混沌的必要条件,并利用最大Lyapunov指数图,分岔图,Poincare截面图和相轨迹图进一步分析了系统的混沌行为. 关键词: 相对转动 非线性动力系统 混沌 Melnikov方法  相似文献   

6.
We investigate statistical properties of unstable periodic orbits, especially actions for two simple linear maps (p-adic Baker map and sawtooth map). The action of periodic orbits for both maps is written in terms of symbolic dynamics. As a result, the expression of action for both maps becomes a Hamiltonian of one-dimensional spin systems with the exponential-type pair interaction. Numerical work is done for enumerating periodic orbits. It is shown that after symmetry reduction, the dyadic Baker map is close to generic systems, and the p-adic Baker map and sawtooth map with noninteger K are also close to generic systems. For the dyadic Baker map, the trace of the quantum time-evolution operator is semiclassically evaluated by employing the method of Phys. Rev. E 49, R963 (1994). Finally, using the result of this and with a mathematical tool, it is shown that, indeed, the actions of the periodic orbits for the dyadic Baker map with symmetry reduction obey the uniform distribution modulo 1 asymptotically as the period goes to infinity. (c) 2000 American Institute of Physics.  相似文献   

7.
When intermediate mass stars reach their last stages of evolution they show pronounced oscillations. This phenomenon happens when these stars reach the so-called asymptotic giant branch (AGB), which is a region of the Hertzsprung-Russell diagram located at about the same region of effective temperatures but at larger luminosities than those of regular giant stars. The period of these oscillations depends on the mass of the star. There is growing evidence that these oscillations are highly correlated with mass loss and that, as the mass loss increases, the pulsations become more chaotic. In this paper we study a simple oscillator which accounts for the observed properties of this kind of stars. This oscillator was first proposed and studied in Icke et al. [Astron. Astrophys. 258, 341 (1992)] and we extend their study to the region of more massive and luminous stars -the region of super-AGB stars. The oscillator consists of a periodic nonlinear perturbation of a linear Hamiltonian system. The formalism of dynamical systems theory has been used to explore the associated Poincare map for the range of parameters typical of those stars. We have studied and characterized the dynamical behavior of the oscillator as the parameters of the model are varied, leading us to explore a sequence of local and global bifurcations. Among these, a tripling bifurcation is remarkable, which allows us to show that the Poincare map is a nontwist area preserving map. Meandering curves, hierarchical-islands traps and sticky orbits also show up. We discuss the implications of the stickiness phenomenon in the evolution and stability of the super-AGB stars. (c) 2002 American Institute of Physics.  相似文献   

8.
The dynamical zeta function is usually defined as an infinite (and divergent) product over all primitive periodic orbits. It is possible to show that as variant Planck's over 2pi -->0 it can be represented as det(1-T), where the operator T(q,q') defines the semiclassical Poincare map. Here, certain consequences of this representation for chaotic systems are discussed. In particular, it is shown that the zeta function can be expressed through a subset of specially selected orbits, the error of this approximation being small as variant Planck's over 2pi -->0. Assuming that the chosen Poincare surface of section is divided into small cells of phase-space area of 2pi variant Planck's over 2pi, these trajectories are uniquely characterized by the requirement that they never go twice through the same cell.  相似文献   

9.
The semiclassical Poincare map is applied to integrable systems and in particular to the rectangular billiard. The zeroes of the functional determinant are shown to give EBK quantization. The transfer operator is explicitly unitary and finite, resulting in a finite expansion of the Euler product over periodic orbits.  相似文献   

10.
《Physics letters. A》1998,247(3):227-234
Symplectic twist maps are obtained from a Lagrangian variational principle. It is well known that nondegenerate minima of the action correspond to hyperbolic orbits of the map when the twist is negative definite and the map is two-dimensional. We show that for more than two dimensions, periodic orbits with minimal action in symplectic twist maps with negative definite twist are not necessarily hyperbolic. In the proof we show that in the neighborhood of a minimal periodic orbit of period n, the nth iterate of the map is again a twist map. This is true even though in general the composition of twist maps is not a twist map.  相似文献   

11.
We consider ray propagation in a waveguide with a designed sound-speed profile perturbed by a range-dependent perturbation caused by internal waves in deep ocean environments. The Hamiltonian formalism in terms of the action and angle variables is applied to study nonlinear ray dynamics with two sound-channel models and three perturbation models: a single-mode perturbation, a randomlike sound-speed fluctuations, and a mixed perturbation. In the integrable limit without any perturbation, we derive analytical expressions for ray arrival times and timefronts at a given range, the main measurable characteristics in field experiments in the ocean. In the presence of a single-mode perturbation, ray chaos is shown to arise as a result of overlapping nonlinear ray-medium resonances. Poincare maps, plots of variations of the action per ray cycle length, and plots with rays escaping the channel reveal inhomogeneous structure of the underlying phase space with remarkable zones of stability where stable coherent ray clusters may be formed. We demonstrate the possibility of determining the wavelength of the perturbation mode from the arrival time distribution under conditions of ray chaos. It is surprising that coherent ray clusters, consisting of fans of rays which propagate over long ranges with close dynamical characteristics, can survive under a randomlike multiplicative perturbation modelling sound-speed fluctuations caused by a wide spectrum of internal waves.  相似文献   

12.
反向导引磁场自由电子激光中平衡态电子相轨道   总被引:1,自引:0,他引:1       下载免费PDF全文
徐勇  张世昌 《物理学报》1994,43(7):1096-1104
考虑电子束自身场情况下,给出了反向导引磁场自由电子激光中平衡态电子运动的一种正则描述。证明了在可积极限下,不动点附近相轨道的稳定性;并采用美国麻省理工学院的反向导引场自由电子激光实验参数,计算了不同束流强度下的Poincaré截面。结果表明,即使自身场相当强(束流强度达到6000A),平衡态电子的相轨道仍保持其规则性,相空间没有出现混沌,这说明在自由电子激光器中,利用反向导引磁场可以获得比传统的采用正向导引磁场更好的电子束质量,从而改善器件的输出性能。 关键词:  相似文献   

13.
杨科利 《物理学报》2016,65(10):100501-100501
本文研究了耦合不连续系统的同步转换过程中的动力学行为, 发现由混沌非同步到混沌同步的转换过程中特殊的多吸引子共存现象. 通过计算耦合不连续系统的同步序参量和最大李雅普诺夫指数随耦合强度的变化, 发现了较复杂的同步转换过程: 临界耦合强度之后出现周期非同步态(周期性窗口); 分析了系统周期态的迭代轨道,发现其具有两类不同的迭代轨道: 对称周期轨道和非对称周期轨道, 这两类周期吸引子和同步吸引子同时存在, 系统表现出对初值敏感的多吸引子共存现象. 分析表明, 耦合不连续系统中的周期轨道是由于局部动力学的不连续特性和耦合动力学相互作用的结果. 最后, 对耦合不连续系统的同步转换过程进行了详细的分析, 结果表明其同步呈现出较复杂的转换过程.  相似文献   

14.
15.
In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems. In this setting, recent works have shown how to get a statistics of extremes in agreement with the classical Extreme Value Theory. We pursue these investigations by giving analytical expressions of Extreme Value distribution parameters for maps that have an absolutely continuous invariant measure. We compare these analytical results with numerical experiments in which we study the convergence to limiting distributions using the so called block-maxima approach, pointing out in which cases we obtain robust estimation of parameters. In regular maps for which mixing properties do not hold, we show that the fitting procedure to the classical Extreme Value Distribution fails, as expected. However, we obtain an empirical distribution that can be explained starting from a different observable function for which Nicolis et al. (Phys. Rev. Lett. 97(21): 210602, 2006) have found analytical results.  相似文献   

16.
The Rossler system has been exhaustively studied for parameter values (a in [0.33,0.557],b=2,c=4). Periodic orbits have been systematically extracted from Poincare maps and the following problems have been addressed: (i) all low order periodic orbits are extracted, (ii) encoding of periodic orbits by symbolic dynamics (from 2 letters up to 11 letters) is achieved, (iii) some rules of growth and of pruning of the periodic orbits population are obtained, and (iv) the templates of the attractors are elaborated to characterize the attractors topology. (c) 1995 American Institute of Physics.  相似文献   

17.
The splitting of separatrices of hyperbolic fixed points for exact symplectic maps of n degrees of freedom is considered. The non-degenerate critical points of a real-valued function (called the Melnikov potential) are associated to transverse homoclinic orbits and an asymptotic expression for the symplectic area between homoclinic orbits is given. Moreover, if the unperturbed invariant manifolds are completely doubled, it is shown that there exist, in general, at least $4$ primary homoclinic orbits (4n in antisymmetric maps). Both lower bounds are optimal. Two examples are presented: a 2n-dimensional central standard-like map and the Hamiltonian map associated to a magnetized spherical pendulum. Several topics are studied about these examples: existence of splitting, explicit computations of Melnikov potentials, transverse homoclinic orbits, exponentially small splitting, etc. Received: 6 June 1996 / Accepted: 16 April 1997  相似文献   

18.
We study numerically the periodic orbits of the Casati-Prosen map, a two-parameter reversible map of the torus, with zero entropy. For rational parameter values, this map preserves rational lattices, and each lattice decomposes into periodic orbits. We consider the distribution function of the periods over prime lattices, and its dependence on the parameters of the map. Based on extensive numerical evidence, we conjecture that, asymptotically, almost all orbits are symmetric, and that for a set of rational parameters having full density, the distribution function approaches the gamma-distribution R(x)=1−ex(1+x). These properties, which have been proved to hold for random reversible maps, were previously thought to require a stronger form of deterministic randomness, such as that displayed by rational automorphisms over finite fields. Furthermore, we show that the gamma-distribution is the limit of a sequence of singular distributions which are observed on certain lines in parameter space. Our experiments reveal that the convergence rate to R is highly non-uniform in parameter space, being slowest in sharply-defined regions reminiscent of resonant zones in Hamiltonian perturbation theory.  相似文献   

19.
We study the propagation of round-off errors near the periodic orbits of a linear map conjugate to a planar rotation with rational rotation number. We embed the two-dimensional discrete phase space (a lattice) in a higher-dimensional torus, where points sharing the same round-off error are uniformly distributed within finitely many convex polyhedra. The embedding dynamics is linear and discontinuous, with algebraic integer coefficients. This representation affords efficient algorithms for classifying and computing the orbits and their exact densities, which we apply to the case of rational rotation number with denominator 7, corresponding to certain algebraic integers of degree three. We provide evidence that the hierarchical arrangement of orbits previously detected in quadratic cases [Lowenstein et al., Chaos 7, 49-66 (1997)] disappears, and that the growth of the number of orbits with the period is algebraic.(c) 2000 American Institute of Physics.  相似文献   

20.
Polarized light     
Following the recent work of Chandleret al on quasi probability distributions for spin-1/2 particles, we show that polarized light can be interpreted in terms of trivariate probability distributions in two different ways by choosing the variates to correspond to (i) the co-ordinates on the Poincare sphere, (ii) the components of the spin operator of the photon. In either case, it is shown that the Margenau-Hill procedure leads to probability mass functions while the Wigner-Weyl approach leads to probability density functions and the well-known Stokes parameters are also realised as appropriate averages with respect to these distribution functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号