首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wave propagation in ventricular muscle is rendered highly anisotropic by the intramural rotation of the fiber. This rotational anisotropy is especially important because it can produce a twist of electrical vortices, which measures the rate of rotation (in degree/mm) of activation wavefronts in successive planes perpendicular to a line of phase singularity, or filament. This twist can then significantly alter the dynamics of the filament. This paper explores this dynamics via numerical simulation. After a review of the literature, we present modeling tools that include: (i) a simplified ionic model with three membrane currents that approximates well the restitution properties and spiral wave behavior of more complex ionic models of cardiac action potential (Beeler-Reuter and others), and (ii) a semi-implicit algorithm for the fast solution of monodomain cable equations with rotational anisotropy. We then discuss selected results of a simulation study of vortex dynamics in a parallelepipedal slab of ventricular muscle of varying wall thickness (S) and fiber rotation rate (theta(z)). The main finding is that rotational anisotropy generates a sufficiently large twist to destabilize a single transmural filament and cause a transition to a wave turbulent state characterized by a high density of chaotically moving filaments. This instability is manifested by the propagation of localized disturbances along the filament and has no previously known analog in isotropic excitable media. These disturbances correspond to highly twisted and distorted regions of filament, or "twistons," that create vortex rings when colliding with the natural boundaries of the ventricle. Moreover, when sufficiently twisted, these rings expand and create additional filaments by further colliding with boundaries. This instability mechanism is distinct from the commonly invoked patchy failure or wave breakup that is not observed here during the initial instability. For modified Beeler-Reuter-like kinetics with stable reentry in two dimensions, decay into turbulence occurs in the left ventricle in about one second above a critical wall thickness in the range of 4-6 mm that matches experiment. However this decay is suppressed by uniformly decreasing excitability. Specific experiments to test these results, and a method to characterize the filament density during fibrillation are discussed. Results are contrasted with other mechanisms of fibrillation and future prospects are summarized. (c)1998 American Institute of Physics.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
Flockerzi D  Heineken W 《Chaos (Woodbury, N.Y.)》2006,16(4):048101; author reply 048102
It is claimed by Rhodes, Morari, and Wiggins [Chaos 9, 108-123 (1999)] that the projection algorithm of Maas and Pope [Combust. Flame 88, 239-264 (1992)] identifies the slow invariant manifold of a system of ordinary differential equations with time-scale separation. A transformation to Fenichel normal form serves as a tool to prove this statement. Furthermore, Rhodes, Morari, and Wiggins [Chaos 9, 108-123 (1999)] conjectured that away from a slow manifold, the criterion of Maas and Pope will never be fulfilled. We present two examples that refute the assertions of Rhodes, Morari, and Wiggins. In the first example, the algorithm of Maas and Pope leads to a manifold that is not invariant but close to a slow invariant manifold. The claim of Rhodes, Morari, and Wiggins that the Maas and Pope projection algorithm is invariant under a coordinate transformation to Fenichel normal form is shown to be not correct in this case. In the second example, the projection algorithm of Maas and Pope leads to a manifold that lies in a region where no slow manifold exists at all. This rejects the conjecture of Rhodes, Morari, and Wiggins mentioned above.  相似文献   

11.
This note serves as a commentary of the paper of Haller [Chaos 10, 99 (2000)] on techniques for detecting invariant manifolds. Here we show that the criterion of Haller can be improved in two ways. First, by using the strain basis reference frame, a more efficient version of theorem 1 of Haller (2000) allows to better detect the manifolds. Second, we emphasize the need to nondimensionalize the estimate of hyperbolic persistence. These statements are illustrated by the example of the Kida ellipse. (c) 2001 American Institute of Physics.  相似文献   

12.
13.
In the referenced paper, there is a technical carelessness in the second lemma, and it is highlighted here to avoid possible failure when the result is used to design the intermittent controller for nonlinear systems.  相似文献   

14.
15.
Lapeyre, Hua, and Legras have recently suggested that the detection of finite-time invariant manifolds in two-dimensional fluid flows, as described by Haller and Haller and Yuan, can be substantially improved. In particular, they suggested (a) a change of coordinates to strain basis before the application of Theorem 1 of Haller and (b) the use of a nondimensionalized time computed from Theorem 1. Here we discuss why these proposed steps will not result in a significant overall improvement. We verify our arguments in a more detailed computation of the example analyzed in Lapeyre, Hau, and Legras (the Kida ellipse), as well as in a two-dimensional barotropic turbulence simulation. While in both of these examples the techniques suggested by Lapeyre, Hau, and Legras reveal additional thin regions of hyperbolicity near vortex cores, they also lead to an overall loss of detail in the global computation of finite-time invariant manifolds. (c) 2001 American Institute of Physics.  相似文献   

16.
17.
刘彦钦 《光谱实验室》2001,18(4):462-464
本文研究了溴化 5- [4 - (3-吡啶丙氧基苯基 ) ]- 10 ,15,2 0 -三苯基卟啉 ,在 p H=4 .0时与 Cu2 + 的显色反应条件 ,其络合物最大吸收波长为 4 13nm。在相同条件下 ,试剂最大吸收波长为 4 4 4nm,对比度大约30 nm。试剂与铜络合比为 1∶ 1,表观摩尔吸光系数为 2 .9× 10 5L· mol-1·cm-1,铜含量在 0— 6 0 μg/ L范围内符合比耳定律 ,可用于痕量铜的测定。  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号