首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In the bi-dimensional parameter space of an impact-pair system, shrimp-shaped periodic windows are embedded in chaotic regions. We show that a weak periodic forcing generates new periodic windows near the unperturbed one with its shape and periodicity. Thus, the new periodic windows are parameter range extensions for which the controlled periodic oscillations substitute the chaotic oscillations. We identify periodic and chaotic attractors by their largest Lyapunov exponents.  相似文献   

2.
The bifurcation structure in a two-parameter family of circle maps is considered. These maps have a (topological) degree that may be different from one. A generalization of the rotation number is given and symmetries of the bifurcations in parameter space are described. Continuity arguments are used to establish the existence of periodic orbits. By plotting the locus of parameter values associated with superstable cycles, self-similar bifurcations are found. These bifurcations are a generalization of the familiar period-doubling cascade in maps with one extrema, to two-parameter maps with two extrema. Finally, a scheme for the global organization of bifurcation in these maps is proposed.  相似文献   

3.
We consider solutions of a partial differential equation which are homogeneous in space and stationary or periodic in time. We study the stability with respect to large wavelength perturbations and the weakly nonlinear behavior around these solutions, especially when they are close to bifurcations for the ordinary differential equation governing the homogeneous solutions of the PDE. We distinguish cases where a spatial parity symmetry holds. All bifurcations occurring generically for two-dimensional ODES are treated. Our main result is that for almost homoclinic periodic solutions instability is generic.  相似文献   

4.
Uniform oscillations in spatially extended systems resonate with temporal periodic forcing within the Arnold tongues of single forced oscillators. The Arnold tongues are wedge-like domains in the parameter space spanned by the forcing amplitude and frequency, within which the oscillator's frequency is locked to a fraction of the forcing frequency. Spatial patterning can modify these domains. We describe here two pattern formation mechanisms affecting frequency locking at half the forcing frequency. The mechanisms are associated with phase-front instabilities and a Turing-like instability of the rest state. Our studies combine experiments on the ruthenium catalyzed light-sensitive Belousov-Zhabotinsky reaction forced by periodic illumination, and numerical and analytical studies of two model systems, the FitzHugh-Nagumo model and the complex Ginzburg-Landau equation, with additional terms describing periodic forcing.  相似文献   

5.
We examine examples of weakly nonlinear systems whose steady states undergo a bifurcation with increasing forcing, such that a forced subsystem abruptly ceases to absorb additional energy, instead diverting it into an initially quiescent, unforced subsystem. We derive and numerically verify analytical predictions for the existence and behavior of such saturated states for a class of oscillator pairs. We also examine related phenomena, including zero-frequency response to periodic forcing, Hopf bifurcations to quasiperiodicity, and bifurcations to periodic behavior with multiple frequencies.  相似文献   

6.
We report our experimental observations of the Shil’nikov-type homoclinic chaos in asymmetry-induced Chua’s oscillator. The asymmetry plays a crucial role in the related homoclinic bifurcations. The asymmetry is introduced in the circuit by forcing a DC voltage. For a selected asymmetry, when a system parameter is controlled, we observed transition from large amplitude limit cycle to homoclinic chaos via a sequence of periodic mixed-mode oscillations interspersed by chaotic states. Moreover, we observed two intermediate bursting regimes. Experimental evidences of homoclinic chaos are verified with PSPICE simulations.  相似文献   

7.
We examine experimentally a chemical system in a flow-through stirred reactor, which is known to provide large-amplitude oscillations of the pH value. By systematic variation of the flow rate, we find that the system displays hysteresis between a steady state and oscillations, and more interestingly, a transition to chaos involving mixed-mode oscillations. The basic pattern of the measured pH in the mixed-mode regime includes a large-scale peak followed by a series of oscillations on a much smaller scale, which are usually highly irregular and of variable duration. The bifurcation diagram shows that chaos sets in via a period-doubling route observed on the large-amplitude scale, but simultaneously small-amplitude oscillations are involved. Beyond the apparent accumulation of period doubling bifurcations, a mixed-mode regime with irregular oscillations on both scales is observed, occasionally interrupted by windows of periodicity. As the flow rate is further increased, chaos turns into quasiperiodicity and later to a simple small-amplitude periodic regime. Dynamics of selected typical regimes were examined with the tools of nonlinear time-series analysis, which include phase space reconstruction of an attractor and calculation of the maximal Lyapunov exponent. The analysis points to deterministic chaos, which appears via a period doubling route from below and via a route involving quasiperiodicity from above, when the flow rate is varied.  相似文献   

8.
We report on the experimental investigation of gluing bifurcations in the analog electronic circuit which models a dynamical system of the third order: Lorenz equations with an additional quadratic nonlinearity. Variation of one of the resistances in the circuit changes the coefficient at this nonlinearity and replaces the Lorenz route to chaos by a different scenario which leads, through the sequence of homoclinic bifurcations, from periodic oscillations of the voltage to the irregular ones. Every single bifurcation “glues” in the phase space two stable periodic orbits and creates a new one, with the doubled length: a sequence of such bifurcations results in the birth of the chaotic attractor.  相似文献   

9.
The work is devoted to numerical simulations of the interaction of heat explosion with natural convection. The model consists of the heat equation with a nonlinear source term describing heat production due to an exothermic chemical reaction coupled with the Navier-Stokes equations under the Boussinesq approximation. We show how complex regimes appear through successive bifurcations leading from a stable stationary temperature distribution without convection to a stationary symmetric convective solution, stationary asymmetric convection, periodic in time oscillations, and finally aperiodic oscillations. A simplified model problem is suggested. It describes the main features of solutions of the complete problem.  相似文献   

10.
Low-frequency variability of the atmospheric flow in the Southern Hemisphere is dominated by irregular changes in the latitude and intensity of the mid-latitude eastward jet about its climatological mean state. This phenomenon, known as atmospheric zonal-flow vacillation, is characterized by the existence of two persistent states of the zonal (i.e., east-west oriented) jet and irregular transitions between them. Nonlinear interactions between the mean flow and the waves play a key role in the dynamics of this vacillation. In the present study, we develop a low-order, deterministic model for the nonlinear dynamics of atmospheric zonal-flow vacillation. Multiple equilibria arise in this model's zonal-mean flow, that is, in the longitudinal flow averaged along a given latitude circle. These equilibria bear a strong resemblance to the two persistent flow regimes found in Southern Hemisphere observations. The two equilibrium states are maintained by wave forcing against surface drag, as in the observations. Successive bifurcations to periodic and chaotic zonal-mean flow regimes occur as the model's dissipation parameter is reduced. (c) 2002 American Institute of Physics.  相似文献   

11.
A well-defined oscillation is observed in the power spectrum of several fluctuating signals in turbulent Rayleigh-Bénard convection occurring in a thin vertical disk filled with water. The experiment reveals that the coherent oscillations are produced by periodic emission of thermal plumes, which gives rise to periodic pulses of forcing, resulting in a pulsed large-scale circulation in the thin cell. The experimental results agree well with the theoretical predictions made from two coupled nonlinear delayed equations.  相似文献   

12.
In this Letter, we report the finding of period-adding scenarios with chaos in firing patterns, observed in biological experiments on a neural pacemaker, with fixed extra-cellular potassium concentration at different levels and taken extra-cellular calcium concentration as the bifurcation parameter. The experimental bifurcations in the two-dimensional parameter space demonstrate the existence of a chaotic region interwoven with the periodic region thereby forming a period-adding sequence with chaos. The behavior of the pacemaker in this region is qualitatively similar to that of the Hindmarsh–Rose neuron model in a well-known comb-shaped chaotic region in two-dimensional parameter spaces.  相似文献   

13.
In this paper, a novel fractional-order discrete map with a sinusoidal function possessing typical nonlinear features, including chaos and bifurcations, is proposed. Firstly, the basic properties involving the stability of the equilibrium points and the symmetry of the map are studied by theoretical analysis. Secondly, the dynamics of the map in commensurate-order and incommensurate-order cases with initial conditions belonging to different basins of attraction is investigated by numerical simulations. The bifurcation types and influential parameters of the map are analyzed via nonlinear tools. Hopf, period-doubling, and symmetry-breaking bifurcations are observed when a parameter or an order is varied. Bifurcation diagrams and maximum Lyapunov exponent spectrums, with both a variation in a system parameter and an order or two orders, are shown in a three-dimensional space. A comparison of the bifurcations in fractional-order and integral-order cases shows that the variation in an order has no effect on the symmetry-breaking bifurcation point. Finally, the heterogeneous hybrid synchronization of the map is realized by designing suitable controllers. It is worth noting that the increase in a derivative order can promote the synchronization speed for the fractional-order discrete map.  相似文献   

14.
The aim of this paper is to investigate the multi-pulse global bifurcations and chaotic dynamics for the nonlinear non-planar oscillations of a cantilever beam subjected to a harmonic axial excitation and two transverse excitations at the free end by using an extended Melnikov method in the resonant case. First, the extended Melnikov method for studying the Shilnikov-type multi-pulse homoclinic orbits and chaos in high-dimensional nonlinear systems is briefly introduced in the theoretical frame. Then, this method is utilized to investigate the Shilnikov-type multi-pulse homoclinic bifurcations and chaotic dynamics for the nonlinear non-planar oscillations of the cantilever beam. How to employ this method to analyze the Shilnikov-type multi-pulse homoclinic bifurcations and chaotic dynamics of high-dimensional nonlinear systems in engineering applications is demonstrated through this example. Finally, the results of numerical simulation are given and also show that the Shilnikov-type multi-pulse chaotic motions can occur for the nonlinear non-planar oscillations of the cantilever beam, which verifies the analytical prediction.  相似文献   

15.
It is well known that instantons are classical topological solutions existing in the context of quantum field theories that lie behind the standard model of particles. To provide a better understanding for the dynamical nature of spinor-type instanton solutions, conformal invariant pure spinor fermionic models that admit particle-like solutions for the derived classical field equations are studied in this work under cosine wave forcing. For this purpose, the effects of external periodic forcing on two systems that have different dimensions and quantum spinor numbers and have been obtained under the use of Heisenberg ansatz are investigated by constructing their Poincaré sections in phase space. As a result, bifurcations and chaos are observed depending on the excitation amplitude of the external forcing in both pure spinor fermionic models.  相似文献   

16.
Low frequency current oscillations have been usually investigated under the influence of the external applied voltage, temperature and illumination. A parallel applied magnetic field has been used in the present work in order to obtain odd periodic windows and bifurcations inside them in a two dimension parameter space for a semi-insulating GaAs sample grown by molecular beam epitaxy. Two kinds of parameter spaces have been used in order to stabilize the odd periodic windows and the bifurcations, namely, the external applied voltage versus the parallel magnetic field and the illumination versus the parallel magnetic field. We report on a successful observation of stable cycles of periodicity 3, 4, 5, 6, 7 and 8 inside a period-3 window. An example of bifurcation route is presented following the sequence from chaos to 4, 3, 6, 3, 5, 7, 5, and back to chaos in the parameter space of voltage versus magnetic field. For this bifurcation route we will show which branch of the cycle is bifurcating and which are coalescing with the control parameters.  相似文献   

17.
吴立锋  关永  刘勇 《物理学报》2013,62(11):110510-110510
分析了分段线性电路系统在周期切换下的复杂动力学行为及其产生的机理. 基于平衡点分析, 给出了两子系统Fold分岔和Hopf分岔条件. 考虑了在不同稳定态时两子系统周期切换的分岔特性, 产生了不同的周期振荡, 并揭示了其产生的机理. 在不同的周期振荡中, 切换点的数量随参数变化产生倍化, 导致切换系统由倍周期分岔进入混沌. 关键词: 分段线性电路 切换系统 非光滑分岔  相似文献   

18.
Non-linear oscillations of a beam subjected to a periodic force at a combination resonance are considered. Using the Galerkin method, a partial differential equation of oscillations is reduced to a system of ordinary differential equations with a small parameter. A system of three autonomous differential equations is derived, the multiple scales method being used. Qualitative properties of trajectories are analyzed. The Naimark-Sacker bifurcations at the combination resonance are analyzed by the center manifold method. Almost-periodic oscillations of a beam arise due to these bifurcations. These oscillations are investigated qualitatively and numerically.  相似文献   

19.
In a chain of nonlinear oscillators, linearly coupled to their nearest neighbors, all travelling waves of small amplitude are found as solutions of finite dimensional reversible dynamical systems. The coupling constant and the inverse wave speed form the parameter space. The groundstate consists of a one-parameter family of periodic waves. It is realized in a certain parameter region containing all cases of light coupling. Beyond the border of this region the complexity of wave-forms increases via a succession of bifurcations. In this paper we give an appropriate formulation of this problem, prove the basic facts about the reduction to finite dimensions, show the existence of the ground states and discuss the first bifurcation by determining a normal form for the reduced system. Finally we show the existence of nanopterons, which are localized waves with a noncancelling periodic tail at infinity whose amplitude is exponentially small in the bifurcation parameter. Received: 10 September 1999 / Accepted: 15 December 1999  相似文献   

20.
The problem of a single acoustically driven bubble translating unsteadily in a fluid is considered. The investigation of the translation equation identifies the inverse Reynolds number as a small perturbation parameter. The objective is to obtain a closed-form, leading order solution for the translation of the bubble, assuming nonlinear radial oscillations and a pressure field as the forcing term. In a second part, the periodic attractor of the Rayleigh-Plesset equation serves as basis for an optimal acoustic forcing designed to achieve maximized bubble translation over one dimensionless period. At near-resonant or super-resonant driving frequencies, it seems one cannot improve much on sinusoidal forcing. However at moderate acoustic intensity and sub-resonant frequencies, acoustic wave forms that enhance bubble collapse lead to displacement many times larger than the case of purely sinusoidal forcing. The survey covers a wide spectrum of driving ratios and bubble diameters including those relevant to biomedical applications. Shape stability issues are considered. Together, these results suggest new ways to predict some of the direct and indirect effects of the acoustic radiation force in applications such as targeted drug delivery, selective bubble driving, and accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号