首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Niraj Kumar 《Physica A》2010,389(9):1812-1818
Motivated by the recent finding [N. Kumar, G.M. Viswanathan, V.M. Kenkre, Physica A 388 (2009) 3687] that the dynamics of particles undergoing density-dependent nonlinear diffusion shows sub-diffusive behaviour, we study the Turing bifurcation in a two-variable system with this kind of dispersal. We perform a linear stability analysis of the uniform steady state to find the conditions for the Turing bifurcation and compare it with the standard Turing condition in a reaction-diffusion system, where dispersal is described by simple Fickian diffusion. While activator-inhibitor kinetics are a necessary condition for the Turing instability as in standard two-variable systems, the instability can occur even if the diffusion constant of the inhibitor is equal to or smaller than that of the activator. We apply these results to two model systems, the Brusselator and the Gierer-Meinhardt model.  相似文献   

2.
Blowout bifurcation in nonlinear systems occurs when a chaotic attractor lying in some symmetric subspace becomes transversely unstable. A class of five-dimensional continuous autonomous systems is considered, in which a two-dimensional subsystem is driven by a family of generalized Lorenz systems. The systems have some common dynamical characters. As the coupling parameter changes, blowout bifurcations occur in these systems and brings on change of the systems' dynamics. After the bifurcation the phenomenon of on-off intermittency appears. It is observed that the systems undergo a symmetric hyperchaos-chaos-hyperchaos transition via or after blowout bifurcations. An example of the systems is given, in which the drive system is the Chen system. We investigate the dynamical behaviour before and after the blowout bifurcation in the systems and make an analysis of the transition process. It is shown that in such coupled chaotic continuous systems, blowout bifurcation leads to a transition from chaos to hyperchaos for the whole systems, which provides a route to hyperchaos.  相似文献   

3.
The effect of an externally imposed perturbation on an unstable or weakly stable shear flow is investigated, with a focus on the role of Lagrangian chaos in the bifurcations that occur. The external perturbation is at rest in the laboratory frame and can form a chain of resonances or cat's eyes where the initial velocity v(x0)(y) vanishes. If in addition the shear profile is unstable or weakly stable to a Kelvin-Helmholtz instability, for a certain amplitude of the external perturbation there can be an unlocking bifurcation to a nonlinear wave resonant around a different value of y, with nonzero phase velocity. The interaction of the propagating nonlinear wave with the external perturbation leads to Lagrangian chaos. We discuss results based on numerical simulations for different amplitudes of the external perturbation. The response to the external perturbation is strong, apparently because of non-normality of the linear operator, and the unlocking bifurcation is hysteretic. The results indicate that the observed Lagrangian chaos is responsible for a second bifurcation occurring at larger external perturbation, locking the wave to the wall. This bifurcation is nonhysteretic. The mechanism by which the chaos leads to locking in this second bifurcation is by means of chaotic advective transport of momentum from one chain of resonances to the other (Reynolds stress) and momentum transport to the vicinity of the wall via chaotic scattering. These results suggest that locking of waves in rotating tank experiments in the presence of two unstable modes is due to a similar process. (c) 2002 American Institute of Physics.  相似文献   

4.
耦合电路中的复杂振荡行为分析   总被引:1,自引:0,他引:1       下载免费PDF全文
张晓芳  陈章耀  毕勤胜 《物理学报》2009,58(5):2963-2970
讨论了两个非线性电路适当连接后的耦合系统随耦合强度变化的演化过程.给出了两子系统各自的分岔行为及通向混沌的过程,指出原子系统均为周期运动时,耦合系统依然会由倍周期分岔进入混沌,同时在混沌区域中存在有周期急剧增加及周期增加分岔等现象.而当周期运动和混沌振荡相互作用时,在弱耦合条件下,受混沌子系统的影响,原周期子系统会在其原先的轨道邻域内作微幅振荡,其振荡幅值随耦合强度的增加而增大,混沌的特征越加明显,相反,周期子系统不仅可以导致混沌子系统的失稳,也会引起混沌吸引子结构的变化. 关键词: 非线性电路 耦合强度 分岔 混沌  相似文献   

5.
Solutions to nonlinear parabolic partial differential equations which describe non-equilibrium systems of different physical nature, arising after the trivial solution has become unstable, are considered. It is demonstrated that in the case of the short-wave instability of the trivial state the primary bifurcation results in the appearance of spatially periodic quasiharmonic solutions, their stability being determined by the universal criterion. With further growth of the bifurcation parameter, two higher (secondary) bifurcations are revealed, one transforming the stationary solution into a travelling wave, the other one giving rise to “ripples” on its “crest”. In the case of the long-wave instability, stationary periodic solutions also arise, but, generally speaking, they are not quasiharmonic, and their stability criterion cannot be expressed in a universal form.  相似文献   

6.
We investigate the Hopf bifurcation of the synchronous chaos in coupled Lorenz oscillators. We find that the system undergoes a phase transition along the Hopf instability of the synchronous chaos. The phase transition makes the traveling wave component with the phase difference φ(i)-φ(i+1)=2π/N between adjacent sites unstable. The phase transition also plays a role to relate the Hopf bifurcation with the co-dimension two bifurcation of the synchronous chaos.  相似文献   

7.
We investigate the behavior of the unstable discrete spectrum of the linearized 2-D Euler equation when the domain is smoothly perturbed. It is shown that when a self-adjoint Schrödinger-type operator undergoes a codimension-1 bifurcation it translates into a bifurcation in the linearized Euler equation associated with an instability either appearing or disappearing.We give sufficient conditions in order to observe smooth quadratic growth of the unstable eigencurves of the linearized Euler equation. The critical exponent is explicitly given as a function of the null-vector involved into the codimension-1 bifurcation using first and second-order moments of a Laplace transform.This analysis provides an explanation for the successive symmetry-breaking bifurcations observed in models of the mid-latitude oceans. An explicit example is also given.  相似文献   

8.
Pulse modulated power electronic converters represent an important class of piecewise-smooth dynamical systems with a broad range of applications in modern power supply systems. The paper presents a detailed investigation of a number of unusual bifurcation phenomena that can occur in power converters with multilevel control. In the first example a closed invariant curve arises in a border-collision bifurcation as a period-6 saddle cycle collides with a stable fixed point of focus type and transforms it into an unstable focus point. The second example involves the formation of a structure of coexisting tori through the interplay between border-collision and global bifurcations. We examine the behavior of the system in the presence of two coexisting stable resonance tori and finally show how an existing torus can develop heteroclinic bubbles that connect the points of a stable resonance cycle with an external pair of saddle and focus cycles. The appearance of these structures is explained in terms of a sequence torus-birth bifurcations with pairs of stable and unstable tori folding one over the other.  相似文献   

9.
通过线性耦合Brusselator模型和Lengyel-Epstein模型,数值研究了双层耦合非对称反应扩散系统中图灵模之间的相互作用以及斑图的形成机理.模拟结果表明,合适的波数比以及相同的对称性是两个图灵模之间达到空间共振的必要条件,而耦合强度则直接影响了图灵斑图的振幅大小.为了保证对称性相同,两个图灵模的本征值高度要位于一定的范围内.只有失稳模为长波模时,才能对另一个图灵模产生调制作用,并形成多尺度时空斑图.随着波数比的增加,短波模子系统依次经历黑眼斑图、白眼斑图以及时序振荡六边形斑图的转变.研究表明失稳图灵模与处于短波不稳定区域的高阶谐波模之间的共振是产生时序振荡六边形的主要原因.  相似文献   

10.
The resonance interaction between two modes is investigated using a two-layer coupled Brusselator model. When two different wavelength modes satisfy resonance conditions, new modes will appear, and a variety of superlattice patterns can be obtained in a short wavelength mode subsystem. We find that even though the wavenumbers of two Turing modes are fixed, the parameter changes have influences on wave intensity and pattern selection. When a hexagon pattern occurs in the short wavelength mode layer and a stripe pattern appears in the long wavelength mode layer, the Hopf instability may happen in a nonlinearly coupled model, and twinkling-eye hexagon and travelling hexagon patterns will be obtained. The symmetries of patterns resulting from the coupled modes may be different from those of their parents, such as the cluster hexagon pattern and square pattern. With the increase of perturbation and coupling intensity, the nonlinear system will convert between a static pattern and a dynamic pattern when the Turing instability and Hopf instability happen in the nonlinear system. Besides the wavenumber ratio and intensity ratio of the two different wavelength Turing modes, perturbation and coupling intensity play an important role in the pattern formation and selection. According to the simulation results, we find that two modes with different symmetries can also be in the spatial resonance under certain conditions, and complex patterns appear in the two-layer coupled reaction diffusion systems.  相似文献   

11.
This paper undertakes a nonlinear analysis of a model for a maglev system with time-delayed feedback. Using linear analysis, we determine constraints on the feedback control gains and the time delay which ensure stability of the maglev system. We then show that a Hopf bifurcation occurs at the linear stability boundary. To gain insight into the periodic motion which arises from the Hopf bifurcation, we use the method of multiple scales on the nonlinear model. This analysis shows that for practical operating ranges, the maglev system undergoes both subcritical and supercritical bifurcations, which give rise to unstable and stable limit cycles respectively. Numerical simulations confirm the theoretical results and indicate that unstable limit cycles may coexist with the stable equilibrium state. This means that large enough perturbations may cause instability in the system even if the feedback gains are such that the linear theory predicts that the equilibrium state is stable.  相似文献   

12.
Cellular cell pattern evolution of cylindrically-diverging detonations is numerically simulated successfully by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. From thesimulation, three cell bifurcation modes are observed during the evolution and referred to as concave front focusing, kinked and wrinkled wave front instability, and self-merging of cellular cells. Numerical research demonstrates that the wave front expansion resulted from detonation front diverging plays a major role in the cellular cell bifurcation, which can disturb the nonlinearlyself-sustained mechanism of detonations and finally lead to cell bifurcations.  相似文献   

13.
We present a qualitative analysis of a generic model structure that can simulate the bursting and spiking dynamics of many biological cells. Four different scenarios for the emergence of bursting are described. In this connection a number of theorems are stated concerning the relation between the phase portraits of the fast subsystem and the global behavior of the full model. It is emphasized that the onset of bursting involves the formation of a homoclinic orbit that travels along the route of the bursting oscillations and, hence, cannot be explained in terms of bifurcations in the fast subsystem. In one of the scenarios, the bursting oscillations arise in a homoclinic bifurcation in which the one-dimensional (1D) stable manifold of a saddle point becomes attracting to its whole 2D unstable manifold. This type of homoclinic bifurcation, and the complex behavior that it can produce, have not previously been examined in detail. We derive a 2D flow-defined map for this situation and show how the map transforms a disk-shaped cross-section of the flow into an annulus. Preliminary investigations of the stable dynamics of this map show that it produces an interesting cascade of alternating pitchfork and boundary collision bifurcations. Received 24 June 1999 and Received in final form 17 February 2000  相似文献   

14.
We consider the stability of periodic gravity free-surface water waves traveling downstream at a constant speed over a shear flow of finite depth. In case the free surface is flat, a sharp criterion of linear instability is established for a general class of shear flows with inflection points and the maximal unstable wave number is found. Comparison to the rigid-wall setting testifies that the free surface has a destabilizing effect. For a class of unstable shear flows, the bifurcation of nontrivial periodic traveling waves is demonstrated at all wave numbers. We show the linear instability of small nontrivial waves that appear after bifurcation at an unstable wave number of the background shear flow. The proof uses a new formulation of the linearized water-wave problem and a perturbation argument. An example of the background shear flow of unstable small-amplitude periodic traveling waves is constructed for an arbitrary vorticity strength and for an arbitrary depth, illustrating that vorticity has a subtle influence on the stability of free-surface water waves.  相似文献   

15.
We study the bifurcation and dynamical behaviour of the system of N globally coupled identical phase oscillators introduced by Hansel, Mato and Meunier, in the cases N=3 and N=4. This model has been found to exhibit robust ‘slow switching’ oscillations that are caused by the presence of robust heteroclinic attractors. This paper presents a bifurcation analysis of the system in an attempt to better understand the creation of such attractors. We consider bifurcations that occur in a system of identical oscillators on varying the parameters in the coupling function. These bifurcations preserve the permutation symmetry of the system. We then investigate the implications of these bifurcations for the sensitivity to detuning (i.e. the size of the smallest perturbations that give rise to loss of frequency locking).For N=3 we find three types of heteroclinic bifurcation that are codimension-one with symmetry. On varying two parameters in the coupling function we find three curves giving (a) an S3-transcritical homoclinic bifurcation, (b) a saddle-node/heteroclinic bifurcation and (c) a Z3-heteroclinic bifurcation. We also identify several global bifurcations with symmetry that organize the bifurcation diagram; these are codimension-two with symmetry.For N=4 oscillators we determine many (but not all) codimension-one bifurcations with symmetry, including those that lead to a robust heteroclinic cycle. A robust heteroclinic cycle is stable in an open region of parameter space and unstable in another open region. Furthermore, we verify that there is a subregion where the heteroclinic cycle is the only attractor of the system, while for other parts of the phase plane it can coexist with stable limit cycles. We finish with a discussion of bifurcations that appear for this coupling function and general N, as well as for more general coupling functions.  相似文献   

16.
Numerical simulation is performed to analyze behavior of reaction-diffusion waves in a medium whose parameters are near both the propagation threshold and diffusive (oscillatory) instability boundary. The wave decays in the subthreshold parameter region and propagates at a constant velocity in the parameter region well above the threshold. Just above the threshold, the wave velocity exhibits alternate intervals of chaotic and constant-amplitude oscillations. The transition from steady to chaotic propagation is a sequence of period-doubling bifurcations that occupies a narrow interval of the bifurcation parameter. In the subthreshold region, the wave decay time is a random function of the bifurcation parameter increasing on average toward the threshold.  相似文献   

17.
The Turing instability is studied in two-component reaction-diffusion systems with nonlinear diffusion terms, and the regions in parametric space where Turing patterns can form are determined. The boundaries between super- and subcritical bifurcations are found. Calculations are performed for one-dimensional brusselator and oregonator models.  相似文献   

18.
We present a detailed study of the reaction-diffusion patterns observed in the thiourea-iodate-sulfite (TuIS) reaction, operated in open one-side-fed reactors. Besides spatial bistability and spatio-temporal oscillatory dynamics, this proton autoactivated reaction shows stationary patterns, as a result of two back-to-back Turing bifurcations, in the presence of a low-mobility proton binding agent (sodium polyacrylate). This is the third aqueous solution system to produce stationary patterns and the second to do this through a Turing bifurcation. The stationary pattern forming capacities of the reaction are explored through a systematic design method, which is applicable to other bistable and oscillatory reactions. The spatio-temporal dynamics of this reaction is compared with that of the previous ferrocyanide-iodate-sulfite mixed Landolt system.  相似文献   

19.
We perform a bifurcation analysis of a model of Ca2+ wave propagation in the basal region of pancreatic acinar cells. The model we consider was first presented in Sneyd et al. [J. Sneyd, K. Tsaneva-Atanasova, J.I.E. Bruce, S.V. Straub, D.R. Giovannucci, D.I. Yule, A model of calcium waves in pancreatic and parotid acinar cells, Biophys. J. 85 (2003) 1392–1405], where a partial bifurcation analysis was given of the model in the absence of diffusion. We obtain more complete information about bifurcations of the diffusionless model via numerical studies, then analyse the spatially extended model by numerical investigation of the travelling wave equations and direct numerical solution of the model equations. We find solitary waves in the model equations arising from homoclinic bifurcations in the travelling wave equations. The solitary waves exist and appear to be stable for a significant interval of the primary bifurcation parameter (i.e., the concentration of inositol trisphosphate) but are eventually replaced by irregular spatio-temporal behaviour. The homoclinic bifurcations are related to a number of complicated mathematical structures in the travelling wave equations, including an anomalous homoclinic-Hopf bifurcation, heteroclinic bifurcations between an equilibrium and a periodic orbit, and homoclinic bifurcations of periodic orbits.  相似文献   

20.
A model for polar filaments interacting via molecular motor complexes is investigated which exhibits bifurcations to spatial patterns. It is shown that the homogeneous distribution of filaments, such as actin or microtubules, may become either unstable with respect to an orientational instability of a finite wave number or with respect to modulations of the filament density, where long-wavelength modes are amplified as well. Above threshold nonlinear interactions select either stripe patterns or periodic asters. The existence and stability ranges of each pattern close to threshold are predicted in terms of a weakly nonlinear perturbation analysis, which is confirmed by numerical simulations of the basic model equations. The two relevant parameters determining the bifurcation scenario of the model can be related to the concentrations of the active molecular motors and of the filaments, respectively, which both could be easily regulated by the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号