首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a reaction-diffusion system in crossed electric and magnetic fields lying on the reaction plane. It is shown that a charge separation along the direction normal to the reaction plane resulting in a diffusional flux may cause a differential flow induced chemical instability and stationary pattern formation on a homogeneous steady state. This pattern is generically different from a Turing pattern modified by the crossed fields. The special role of magnetic field is emphasized. Our theoretical analysis is corroborated by numerical simulation on a reaction-diffusion system in three dimensions.  相似文献   

2.
时空斑图广泛地存在于反应扩散系统中,在延展的布鲁塞尔振子模型中,一维的时空斑图已经被研究过.本文中,我们对布鲁塞尔振子模型进行线性稳定性分析,模拟出两维的时空斑图,进一步阐明斑图形成的机制,形成斑图的机制是由于霍普夫失稳、短波失稳和图灵失稳以及它们之间的相互作用.当系统处于非平衡状态下,布鲁塞尔振子模型可以得到有序的时空斑图.?  相似文献   

3.
We study the robust dynamical behaviors of reaction-diffusion systems where the transport gives rise to non-Fickian diffusion. A prototype model describing the deposition of molecules in a surface is used to show the generic appearance of Turing structures which can coexist with homogeneous states giving rise to localized structures through the pinning mechanism. The characteristic lengths of these structures are in the nanometer region in agreement with recent experimental observations.  相似文献   

4.
5.
The hierarchy of kinetic equations for diffusion-reaction processes are rederived using a Fock space formalism for the Master equation. In the diffusion dominated case the reactive part can be analyzed perturbationally. In according to the experimental situation the behaviour of the system is governed by one space dimension. The summation of a whole class of terms in a perturbative serie yields the scaling behaviour of the production rate of the C particle. The solution depends on the ratio of the diffusion constantsD=D A /D B and the ratio of the characteristic time scales for reaction and diffusion, respectively. Various special cases and approximations are discussed in terms ofD. The analytical results can be supported by numerical simulations.  相似文献   

6.
We consider a 2-component excitable and diffusive system which describes a simple exothermic reaction process. In some parameter regime, there are two characteristics of travelling pulses of the system: (i) travelling pulses are planarly unstable; (ii) when two travelling pulses approach closely, they do not annihilate each other and repel like elastic objects. Under this situation, it is shown that ring patterns break down into complex patterns in 2-dimensions, which are totally different from those arising in the well-known excitable and diffusive system with the FitzHugh-Nagumo nonlinearity. (c) 1997 American Institute of Physics.  相似文献   

7.
Two types of transitions from the time-periodic spatiotemporal patterns to chaotic ones in the spatially one-dimensional ionic reaction-diffusion system forced either with direct or alternating electric field are described and analyzed by numerical techniques. An ionic version of the Brusselator kinetic scheme is considered. The Karhunen-Loeve decomposition technique is shown to be a possible tool for the global representation of dynamic behavior, but fails as a tool in the identification of the route of transition to chaos in the case of direct current forcing. Higher dimensional chaos with two positive Lyapunov exponents has been identified for the case of alternating current forcing. Results of the Karhunen-Loeve analysis are compared to results of classical analysis of local time series (attractor dimensions, Lyapunov exponents).  相似文献   

8.
The finite-wavelength instability gives rise to a new type of wave in reaction-diffusion systems: packet waves, which propagate only within a wave packet, are found in experiments on the Belousov-Zhabotinsky reaction dispersed in water-in-oil AOT microemulsion (BZ-AOT) as well as in model simulations. Inwardly moving packet waves with negative curvature occur in experiments and in a model of the BZ-AOT system when the dispersion d omega(k)/dk is negative at the characteristic wave number k(0). This result sheds light on the origin of anti-spirals.  相似文献   

9.
We examine a spatially discrete reaction-diffusion model based on the interactions that create a periodic pattern in the Drosophila eye imaginal disc. This model is known to be capable of generating a regular hexagonal pattern of gene expression behind a moving front, as observed in the fly system. In order to better understand the novel “switch and template” mechanism behind this pattern formation, we present here a detailed study of the model's behavior in one dimension, using a combination of analytic methods and numerical searches of parameter space. We find that patterns are created robustly, provided that there is an appropriate separation of timescales and that self-activation is sufficiently strong, and we derive expressions in this limit for the front speed and the pattern wavelength. Moving fronts in pattern-forming systems near an initial linear instability generically select a unique pattern, but our model operates in a strongly nonlinear regime where the final pattern depends on the initial conditions as well as on parameter values. Our work highlights the important role that cellularization and cell-autonomous feedback can play in biological pattern formation.  相似文献   

10.
孙桂全  靳祯  刘权兴  李莉 《中国物理 B》2008,17(11):3936-3941
This paper considers the Holling-Tanner model for predator-prey with self and cross-diffusion. From the Turing theory, it is believed that there is no Turing pattern formation for the equal self-diffusion coefficients. However, combined with cross-diffusion, it shows that the system will exhibit spotted pattern by both mathematical analysis and numerical simulations. Furthermore, asynchrony of the predator and the prey in the space. The obtained results show that cross-diffusion plays an important role on the pattern formation of the predator-prey system.  相似文献   

11.
In this paper, we show by means of numerical simulations how new patterns can emerge in a system with wave instability when a unidirectional advective flow (plug flow) is added to the system. First, we introduce a three variable model with one activator and two inhibitors with similar kinetics to those of the Oregonator model of the Belousov-Zhabotinsky reaction. For this model, we explore the type of patterns that can be obtained without advection, and then explore the effect of different velocities of the advective flow for different patterns. We observe standing waves, and with flow there is a transition from out of phase oscillations between neighboring units to in-phase oscillations with a doubling in frequency. Also mixed and clustered states are generated at higher velocities of the advective flow. There is also a regime of "waving Turing patterns" (quasi-stationary structures that come close and separate periodically), where low advective flow is able to stabilize the stationary Turing pattern. At higher velocities, superposition and interaction of patterns are observed. For both types of patterns, at high velocities of the advective field, the known flow distributed oscillations are observed.  相似文献   

12.
Patterns in reaction-diffusion systems generally consist of smooth traveling waves or of stationary, discontinuous Turing structures. Hybrid patterns that blend the properties of waves and Turing structures have not previously been observed. We report observation of dash waves, which consist of wave segments regularly separated by gaps, moving coherently in the Belousov-Zhabotinsky system dispersed in water-in-oil microemulsion. Dash waves emerge from the interaction between excitable and pseudo-Turing-unstable steady states. We are able to generate dash waves in simulations with simple models.  相似文献   

13.
《Physica A》2006,365(2):300-306
We investigate pattern formation in a fractional reaction–diffusion system. By the method of computer simulation of the model of excitable media with cubic nonlinearity we are able to show structure formation in the system with time and space fractional derivatives. We further compare the patterns obtained by computer simulation with those obtained by simulation of the similar system without fractional derivatives. As a result, we are able to show that nonlinearity plays the main role in structure formation and fractional derivative terms change the transient dynamics. So, when the order of time derivative increases and approaches the value of 1.5, the special structure formation switches to homogeneous oscillations. In the case of space fractional derivatives, the decrease of the order of these derivatives leads to more contrast dissipative structures. The variational principle is used to find the approximate solution of such fractional reaction–diffusion model. In addition, we provide a detailed analysis of the characteristic dissipative structures in the system under consideration.  相似文献   

14.
We study a one-dimensional reaction-diffusion system which describes an isothermal autocatalytic chemical reaction involving both a quadratic (A + B → 2B) and a cubic (A + 2B → 3B) autocatalysis. The parameters of this system are in the ratio D = DB/DA of the diffusion constants of the reactant A and the autocatalyst B, and the relative activity k of the cubic reaction. First, for all values of D > 0 and k ≥ 0, we prove the existence of a family of propagating fronts (or travelling waves) describing the advance of the reaction. In particular, in the quadratic case k = 0, we recover the results of Billingham and Needham [Phil. Trans. R. Soc. London A 334 (1991) 1–24]. Then, if D is close to 1 and k is sufficiently small, we prove using energy functionals that these propagating fronts are stable against small perturbations in exponentially weighted Sobolev spaces. This extends part of the results that are known for the scalar equation to which our system reduces when D = 1.  相似文献   

15.
Silicon wafers were implanted with 40 keV B+ ions (to doses of 1.2×1014 or 1.2×1015 cm–2) and 50 or 100 keV N+ ions (to doses from 1.2×1014 to 1.2×1015 cm–2). After implantations, the samples were furnace annealed at temperatures from 100 to 450 °C. The depth profiles of the radiation damages before and after annealing were obtained from random and channeled RBS spectra using standard procedures. Two damaged regions with different annealing behaviour were found for the silicon implanted with boron ions. Present investigations show that surface disordered layer conserves at the annealing temperatures up to 450 °C. The influence of preliminary boron implantation on the concentration of radiation defects created in subsequent nitrogen implantation was studied. It was shown that the annealing behaviour of the dual implanted silicon layers depends on the nitrogen implantation dose.The authors would like to thank the members of the INP accelerator staff for the help during the experiments. The work of two authors (V.H. and J.K.) was partially supported by the Internal Grant Agency of Academy of Science of Czech Republic under grant No. 14805.  相似文献   

16.
We report results from experiments with a pseudo-one-dimensional Belousov-Zhabotinsky reaction that employs 1,4-cyclohexanedione as its organic substrate. This excitable system shows traveling oxidation pulses and pulse trains that can undergo complex sequences of propagation failures. Moreover, we present examples for (i) breathing pulses that undergo periodic changes in speed and size and (ii) backfiring pulses that near their back repeatedly generate new pulses propagating in opposite direction.  相似文献   

17.
Resonance regions similar to the Arnol'd tongues found in single oscillator frequency locking are observed in experiments using a spatially extended periodically forced Belousov-Zhabotinsky system. We identify six distinct 2:1 subharmonic resonant patterns and describe them in terms of the position-dependent phase and magnitude of the oscillations. Some experimentally observed features are also found in numerical studies of a forced Brusselator reaction-diffusion model.  相似文献   

18.
The numerical simulation of Markov processes is usually performed by means of the minimal process method or Gillespie algorithm. In reaction-diffusion systems including extremely inhomogeneous situations, the direct application of this algorithm meets with severe difficulties which eventually cause extremely large computing times. We present a modification of the minimal process method which make it applicable to such situations even on small size computers within moderate computing times. Our modifications include the use of logarithmic classes for transition probabilities in order to increase the acceptance rate of von Neumann rejection methods, a non-local storage of the lattice state, hash tables and dynamical storage management in order to save memory capacity. Our actual example for demonstrating our modified algorithm is signal transduction in biological receptor cells where transmitter molecules are released on a two-dimensional structure (cell membrane) after a quantum reception event, e.g. a photon capture in photoreceptor cells, and interact with ionic transport channels. We find satisfying agreement of our simulation results with the experimental data for the ventral nerve photoreceptor of Limulus.  相似文献   

19.
F.H. Jafarpour  B. Ghavami 《Physica A》2007,382(2):531-536
A one-dimensional reaction-diffusion model consisting of two species of particles and vacancies on a ring is introduced. The number of particles in one species is conserved while in the other species it can fluctuate because of creation and annihilation of particles. It has been shown that the model undergoes a continuous phase transition from a phase where the currents of different species of particles are equal to another phase in which they are different. The total density of particles and also their currents in each phase are calculated exactly.  相似文献   

20.
The characterization of chaotic spatiotemporal dynamics has been studied for a representative nonlinear autocatalytic reaction mechanism coupled with diffusion. This has been carried out by an analysis of the Lyapunov spectrum in spatiallylocalised regions. The linear scaling relationships observed in the invariant measures as a function of thesub-system size have been utilized to assess the controllability, stability and synchronization properties of the chaotic dynamics. The dynamical synchronization properties of this high-dimensional system has been analyzed using suitable Lyapunov functionals. The possibility of controlling spatiotemporal chaos for relevant objectives using available noisy scalar time-series data with simultaneous self-adaptation of the control parameter(s) has also been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号