首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 882 毫秒
1.
Efficient chemoenzymatic synthesis of O-linked sialyl oligosaccharides   总被引:2,自引:0,他引:2  
The tumor associated Tn (GalNAcalpha(1-1)-Thr/Ser)- and T (Galbeta(1-3)-GalNAcalpha(1-1)Thr/Ser)-antigens and their sialylated derivatives are present on the surface of many cancer cells. Preparative synthesis of these sialylated T- and Tn-structures has been achieved mainly from a chemical synthetic approach due to the lack of the required glycosyltransferases. We demonstrate a flexible and efficient chemoenzymatic approach for using recombinant sialyltransferases including a chicken GalNAcalpha2,6-sialyltransferase (chST6GalNAc I) and a porcine Galbeta(1-3)GalNAcalpha-2,3-sialyltransferase (pST3Gal I). Using these enzymes, the common O-linked sialosides Neu5Acalpha(2-6)GalNAcalpha(1-1)Thr, Galbeta(1-3)[Neu5Acalpha(2-6)]GalNAcalpha(1-1)Thr, Neu5Acalpha(2-3)Galbeta(1-3)GalNAcalpha(1-1)Thr, and Neu5Acalpha(2-3)Galbeta(1-3)[Neu5Acalpha(2-6)]GalNAcalpha(1-1)Thr were readily prepared at preparative scale. The chST6GalNAc I was found to require at least one amino acid (Thr/Ser) for optimal activity, and is thus an ideal catalyst for synthesis of synthetic glycopeptides and glycoconjugates with O-linked glycans.  相似文献   

2.
Ando T  Li SC  Ito M  Li YT 《Journal of chromatography. A》2005,1078(1-2):193-195
This paper reports a facile method for the preparation of lyso-GM1 [Gal beta1-->3GalNAc beta1--> 4(Neu5Ac alpha2-->3)Galbeta1-->4Glc beta1-->1'-sphingosine] and lyso-GM2 [GalNAc beta1-->4(Neu5Ac alpha2-->3)Gal beta1-->4Glc beta1-->sphingosine], respectively, from GM1 [Galbeta1-->3GalNAc beta1-->4(Neu5Ac alpha2-->3)Galbeta1-->4Glc beta1-->1'-Cer] and GM2[GalNAc beta1-->4(Neu5Ac alpha2-->3)Galbeta1-->4Glc beta1-->1'-Cer], using sphingolipid ceramide deacylase and high performance anion-exchange chromatography (HPAEC). The enzymatically released lyso-GM1 and/or lyso-GM2 was effectively separated from its parent ganglioside by HPAEC using a Mono Q HR 5/5 column with an Amersham Biosciences fast protein liquid chromatography system. The yield was almost quantitative and the separation completed in approximately 3 h. This method is more convenient and effective than the conventional method using alkaline hydrolysis and silicic acid chromatography to generate and purify lyso-gangliosides.  相似文献   

3.
A practical sequence is described for converting d-glucosamine into peracetylated Gal(beta-1,4)GlcNTroc(beta1-S)Ph and Neu5Ac(alpha-2,3)Gal(beta-1,4)GlcNTroc(beta1-S)Ph building blocks using a synthetic strategy based on chemoenzymatic oligosaccharide synthesis. The known trichloroethoxycarbonyl, N-Troc, protecting group was selected as a suitable protecting group for both enzymatic and chemical reaction conditions. These oligosaccharide building blocks proved effective donors for the beta-selective glycosylation of the unreactive OH-3 of a polymeric PEG-bound acceptor and for the axial OH-2 of a mannose acceptor in good yields. The resulting complex oligosaccharides are useful for vaccine and pharmaceutical applications.  相似文献   

4.
2-(Perfluorohexyl)ethoxymethyl chloride was prepared as a novel fluorous protecting reagent. Neu5Ac aldolase-catalyzed chemoenzymatic transformation of N-acetyl-D-mannosamine to Neu5Ac derivatives was achieved successfully by using the fluorous reagent not only for hydroxy group protection but also for fluorous tagging. This chemoenzymatic method was applied to the synthesis of 2-deoxy-2,3-didehydrosialic acid 1 known as a potent sialidase inhibitor.  相似文献   

5.
The human macrophage galactose‐type lectin (MGL) is a key physiological receptor for the carcinoma‐associated Tn antigen (GalNAc‐α‐1‐O‐Ser/Thr) in mucins. NMR and modeling‐based data on the molecular recognition features of synthetic Tn‐bearing glycopeptides by MGL are presented. Cognate epitopes on the sugar and matching key amino acids involved in the interaction were identified by saturation transfer difference (STD) NMR spectroscopy. Only the amino acids close to the glycosylation site in the peptides are involved in lectin contact. Moreover, control experiments with non‐glycosylated MUC1 peptides unequivocally showed that the sugar residue is essential for MGL binding, as is Ca2+. NMR data were complemented with molecular dynamics simulations and Corcema‐ST to establish a 3D view on the molecular recognition process between Gal, GalNAc, and the Tn‐presenting glycopeptides and MGL. Gal and GalNAc have a dual binding mode with opposite trend of the main interaction pattern and the differences in affinity can be explained by additional hydrogen bonds and CH–π contacts involving exclusively the NHAc moiety.  相似文献   

6.
Glycosylation of various galactose derivatives with O-acetylated sialic acid N-phenyltrifluoroacetimidate as the donor was investigated. Efficient alpha(2,3)sialylation of galactose, with up to 73% yield and 8.4:1 stereoselectivity, was realized when 2,3,4-unprotected galactose derivatives and TBSOTf were used as acceptors and promoter, respectively. Sialylation of 2-(trimethylsilyl)ethyl 6-O-tert-butyldiphenylsilyl-beta-D-galactopyranoside (3f) gave the best result, and the resultant Neu5Ac alpha(2-->3)Gal disaccharide was successfully used in the synthesis of ganglioside GM3.  相似文献   

7.
A MUC1-related glycopeptide having five core-2 hexasaccharide branches (C330H527N46O207, MW = 8450.9) was synthesized by a new strategy using a combination of microwave-assisted solid-phase synthesis (MA-SPGS) and enzymatic sugar elongation. Synthesis of a key glycopeptide intermediate was best achieved in a combination of PEGA [poly(ethylene glycol)-poly-(N,N-dimethylacrylamide) copolymer] resin and MA-SPGS using glycosylated amino acid building blocks with high speed and high purity. Deprotection of the glycopeptide intermediate and subsequent glycosyltransferase-catalyzed sugar elongations were performed for generation of the additional diversities with the sugar moieties of glycopeptides using beta1,4-galactosyltransferase (beta1,4-GalT) and two kinds of alpha2,3-sialyltransferases [ST3Gal III; alpha2,3-(N)-SiaT and ST3Gal II; alpha2,3-(O)-SiaT]. These reactions proceeded successfully in the presence of 0.2% Triton X-100 to convert the chemically synthesized trisaccharide glycans to disialylated hexasaccharide.  相似文献   

8.
The molecular recognition of several glycopeptides bearing Tn antigen (α‐O‐GalNAc‐Ser or α‐O‐GalNAc‐Thr) in their structure by three lectins with affinity for this determinant has been analysed. The work yields remarkable results in terms of epitope recognition, showing that the underlying amino acid of Tn (serine or threonine) plays a key role in the molecular recognition. In fact, while Soybean agglutinin and Vicia villosa agglutinin lectins prefer Tn‐threonine, Helix pomatia agglutinin shows a higher affinity for the glycopeptides carrying Tn‐serine. The different conformational behaviour of the two Tn biological entities, the residues of the studied glycopeptides in the close proximity to the Tn antigen and the topology of the binding site of the lectins are at the origin of these differences.  相似文献   

9.
[formula: see text] Numerous glycoconjugates contain the disaccharide Neu5Ac alpha (2-->3)DGalp. An efficient way to incorporate this disaccharide into synthetic glycoconjugates is to develop a disaccharide building block. This communication reports a chemoenzymatic route to such a building block which requires as few as four steps. Some examples using more chemical steps are also presented, which increase the flexibility. These disaccharide donors were used to prepare synthetic trisaccharides.  相似文献   

10.
In contrast to normal cells, the glycoprotein profile on epithelial tumor cells is distinctly altered. Due to an incomplete formation of the glycan side-chains resulting from a premature sialylation, additional peptide epitopes become accessible to the immune system in mucin-type glycoproteins on tumor cells. These tumor-associated structure alterations constitute the basis for a selective immunological attack on cancer cells. For the construction of immunostimulating antigens, glycopeptide partial structures from the mucins MUC1 and MUC4 carrying the tumor-associated sialyl-T(N), alpha2,6-sialyl-T and alpha2,3-sialyl-T antigens have been synthesized. Employing different linkers such as the allylic HYCRON or the fluoride-sensitive PTMSEL anchor, the antigenic glycopeptide structures were constructed on the solid phase utilizing pre-assembled glycosyl amino acid building blocks prepared in solution by convergent chemical or chemoenzymatic strategies. The proliferation of cytotoxic T cells has been induced applying a construct composed of a sialyl-T(N) MUC1-glycopeptide conjugated with a tetanus toxin T cell peptide epitope.  相似文献   

11.
《Mendeleev Communications》2023,33(4):476-478
Disaccharides with the terminal Glcβ1-3 motif were synthesized as probes for studying human blood antibodies. An antibody isolated using Glcβ1-3GalNAcα–Sepharose was found to bind the inner part of the polysaccharide [–4GlcA6LThr3Acβ1-6Galβ1-6Glcβ1-3GalNAc6Acβ1–]n as evidenced by the use of a printed glycan array and inhibition assays.  相似文献   

12.
Two underivatized glycosphingolipids, Le(b) and Le(y), isomeric in carbohydrate structure (Fuc alpha 1-->2Gal beta 1--> 3[Fuc alpha 1-->4]GlcNAc beta 1-->3Gal beta 1-->4Glc beta 1-->1Cer and Fuc alpha 1-->2Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc beta 1-->3Gal beta 1--> 4Glc beta 1-->1Cer, respectively), were analyzed by positive-ion fast-atom bombardment (FAB) mass spectrometry with high energy collision-induced dissociation (CID) and linked scanning. The two isomers were distinguishable by the abundance of product ions derived from the non-reducing terminal tetrasaccharide fragment via sequential beta-eliminations of vicinally linked saccharide residues. Following earlier studies from other laboratories, which have dealt primarily with positive-ion FAB-CID mass spectrometry of simple model oligosaccharides, these results exemplify the practical application of two-sector methodology to underivatized complex glycoconjugates commonly encountered in the biomedical field.  相似文献   

13.
A disialylated tetrasaccharide, Neu5Ac(α2,3)Gal(β1,3)[Neu5Ac(α2,6)]GlcNAc ( 1 ), which is found at the termini of some N‐glycans, has been synthesized. Compound 1 was obtained through an α‐sialylation reaction between a sialic acid donor and a trisaccharide that was synthesized from the glycosylation of a sialylated disaccharide with a glucosaminyl donor. This synthetic route enabled the synthesis of the as‐described disialylated structure. A more‐convergent route based on the glycosylation of two sialylated disaccharides was also established to scale up the synthesis. Protection of the amide groups in the sialic acid residues significantly increased the yield of the glycosylation reaction between the two sialylated disaccharides, thus suggesting that the presence of hydrogen bonds on the sialic acid residues diminished their reactivity.  相似文献   

14.
Methyl alpha- and beta-glycosides of N-acetylneuraminic acid (Neu5Ac) and N-acetyl-3 beta-hydroxyneuraminic acid (Neu5Ac beta 3OH) (1-4) were prepared to evaluate their calcium-binding ability. (Methyl alpha-glucopyranosidonyl) alpha- and beta-, and 4-methylumbelliferyl alpha-glycosides of Neu5Ac and Neu5Ac beta 3OH (5-10) were also synthesized for the comparison of chemical and enzymatic stabilities, respectively. Methyl beta-glycosides of Neu5Ac and Neu5Ac beta 3OH, 3 and 4, respectively, showed intense calcium-binding abilities, while no such ability was observed in the corresponding alpha-glycosides, 1 and 2. The Neu5Ac beta 3OH glycosides, 6, 8, and 10, showed much stronger resistance to acidic hydrolysis and sialidase digestion than the corresponding Neu5Ac glycosides, 5, 7, and 9.  相似文献   

15.
Group B Streptococcus serotypes Ia and Ib capsular polysaccharides are key targets for vaccine development. In spite of their immunospecifity these polysaccharides share high structural similarity. Both are composed of the same monosaccharide residues and differ only in the connection of the Neu5Acα2-3Gal side chain to the GlcNAc unit, which is a β1-4 linkage in serotype Ia and a β1-3 linkage in serotype Ib. The development of efficient regioselective routes for GlcNAcβ1-3[Glcβ1-4]Gal synthons is described, which give access to different group B Streptococcus (GBS) Ia and Ib repeating unit frameshifts. These glycans were used to probe the conformation and molecular dynamics of the two polysaccharides, highlighting the different presentation of the protruding Neu5Acα2-3Gal moieties on the polysaccharide backbones and a higher flexibility of Ib polymer relative to Ia, which can impact epitope exposure.  相似文献   

16.
A complex mixture of isomeric neutral oligosaccharides from pooled human milk was analyzed by nano-electrospray ionization (ESI) in a quadrupole ion trap mass spectrometer (QIT-MS) in the negative ion mode. Since deprotonated molecules of neutral oligosaccharides follow distinct fragmentation rules, which have been elucidated by using model compounds (see [1]), spectra obtained from consecutive CID experiments allowed the differentiation of isomers out of this highly complex mixture. With this method new human milk oligosaccharides of previously unknown isomeric structures have been identified, e.g., the occurence of three isomeric fucosylated lacto-N-hexaoses could be determined precisely, which have not been described before: (1) Fuc (alpha1-->2) Gal (beta1-->3) GlcNac (beta1-->3) Gal (beta1-->4) GlcNac (beta1-->3) Gal (beta1-->4) Glc, (2) Gal (beta1-->4) GlcNAc [(alpha1-->3) Fuc] (beta1-->3) Gal (beta1-->4) GlcNac (beta1-->3) Gal (beta1-->4) Glc, (3) Gal (beta1-->4) GlcNAc (beta1-->3) Gal (beta1-->4) GlcNac [(alpha1-->3) Fuc] (beta1-->3) Gal (beta1-->4) Glc.  相似文献   

17.
Solid‐phase synthesis of sialyl Tn [α‐Neu5Ac‐(2→6)‐α‐GalNAc‐(1→O)‐Ser] antigen with Kenner's acylsulfonamide linker is described. The acylsulfonamide bond was found to be stable under glycosylation reactions using dimethyl(methylthio)sulfonium triflate (DMTST) as a promoter and basic conditions used for the removal of protecting groups. The solid‐phase reaction was monitored by the inverse gated decoupling 13C NMR technique, which enabled quantitative analysis of the reaction progress. At the end of the synthesis, the sulfamyl group of the linker was activated by treatment with (trimethylsilyl)diazomethane to provide a N‐methyl‐N‐acylsulfonamide. The acyl group was displaced with hydroxide to give the corresponding precursors of sialyl Tn antigen and its anomeric isomers, which were deprotected to afford the target molecules.   相似文献   

18.
Recombinant beta-1,4-galactosyltranferase (beta 1,4-GalT) and alpha-2,6-sialytransferase (alpha 2,6-SiaT) immobilised covalently with activated Sepharose beads were employed for the practical synthesis of a trisaccharide derivative, Neu-5Ac alpha(2-->6)Gal beta(1-->4)GlcNAc beta-O-(CH2)6-NH2, on a water-soluble primer having GlcNAc residues through a alpha-chymotrypsin-sensitive linker.  相似文献   

19.
Microwave‐assisted solid‐phase synthesis allows for the rapid and large‐scale preparation and structure–activity characterization of tandem repeating glycopeptides, namely monodispersed synthetic antifreeze glycopeptides (syAFGPs, H‐[Ala‐Thr(Galβ1,3GalNAcα1→)‐Ala]n‐OH, n=2–6). By employing novel AFGP analogues, we have demonstrated that of the monodispersed syAFGPn (n=2–6, degree of polymerization, DP=2–6, Mw=1257–3690 Da), syAFGP5 (DP=5, Mw=3082 Da) and syAFGP6 (DP=6, Mw=3690 Da) exhibit the ability to form typical hexagonal bipyramidal ice crystals and satisfactory thermal hysteresis activity. Structural characterization by NMR and CD spectroscopy revealed that syAFGP6 forms a typical poly‐L ‐proline type II helix‐like structure in aqueous solution whereas enzymatic modification by sialic acid of the residues at the C‐3 positions of the nonreducing Gal residues disturbs this conformation and eliminates the antifreeze activity.  相似文献   

20.
The structural features of MUC1‐like glycopeptides bearing the Tn antigen (α‐O‐GalNAc‐Ser/Thr) in complex with an anti MUC‐1 antibody are reported at atomic resolution. For the α‐O‐GalNAc‐Ser derivative, the glycosidic linkage adopts a high‐energy conformation, barely populated in the free state. This unusual structure (also observed in an α‐S‐GalNAc‐Cys mimic) is stabilized by hydrogen bonds between the peptidic fragment and the sugar. The selection of a particular peptide structure by the antibody is thus propagated to the carbohydrate through carbohydrate/peptide contacts, which force a change in the orientation of the sugar moiety. This seems to be unfeasible in the α‐O‐GalNAc‐Thr glycopeptide owing to the more limited flexibility of the side chain imposed by the methyl group. Our data demonstrate the non‐equivalence of Ser and Thr O‐glycosylation points in molecular recognition processes. These features provide insight into the occurrence in nature of the APDTRP epitope for anti‐MUC1 antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号