首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Transverse phonon relaxation according to the Landau-Rumer mechanism is considered for an isotropic medium and crystals of germanium, silicon, and diamond possessing a cubic symmetry. The energy of elastic deformation caused by the anharmonicity of vibrations of the cubic crystal lattice is expressed via the second-and third-order moduli of elasticity. Using the known values of these elastic moduli, parameters determining the frequencies of the transverse phonon relaxation in the Landau-Rumer mechanism are evaluated for the germanium, silicon, and diamond crystals. It is shown that the dependence of the relaxation frequency on the wavevector of thermal and high-frequency phonons sharply differs from the classical Landau-Rumer relationship both in the isotropic medium and in the cubic crystals. It is established that the observed peculiarities in the relaxation frequency are related to the angular dependence of the probability of anharmonic scattering and the anisotropy of elastic properties of the germanium, silicon, and diamond crystals. A new method is proposed for the experimental determination of the relaxation frequency of high-frequency phonons as a function of the wavevector using the temperature dependence of the coefficient of absorption of high-frequency ultrasound.  相似文献   

2.
The effect of normal phonon-phonon scattering processes on the thermal conductivity of silicon crystals with various degrees of isotope disorder is considered. The redistribution of phonon momentum in normal scattering processes is taken into account within each oscillation branch (the Callaway generalized model), as well as between different oscillation branches of the phonon spectrum (the Herring mechanism). The values of the parameters are obtained that determine the phonon momentum relaxation in anharmonic scattering processes. The contributions of the drift motion of longitudinal and transverse phonons to the thermal conductivity are analyzed. It is shown that the momentum redistribution between longitudinal and transverse phonons in the Herring relaxation model represents an efficient mechanism that limits the maximum thermal conductivity in isotopically pure silicon crystals. The dependence of the maximum thermal conductivity on the degree of isotope disorder is calculated. The maximum thermal conductivity of isotopically pure silicon crystals is estimated for two variants of phonon momentum relaxation in normal phonon-phonon scattering processes.  相似文献   

3.
杨磊  吴建生  张澜庭 《中国物理》2004,13(4):516-521
We have prepared the skutterudite-related compounds FeCo_3Sb_{12} and La_{0.75}Fe_3CoSb_{12} with different average grain sizes (about 0.8 and 3.9μm) by hot pressing. Samples were characterized by XRD, EPMA and SEM. The lattice thermal conductivity was investigated in the temperature range from room temperature to 200℃. Based on the Debye model, we analyse the change in lattice thermal conductivity due to various phonon scattering mechanisms by examining the relationship between the weighted phonon relaxation time τ(ω/ω_D)^2 and the reduced phonon frequency ω/ω_D. The effect of grain boundary scattering to phonon is negligible within the range of grain sizes considered in this study. The large reduction in lattice thermal conductivity of FeCo_3Sb_{12} compound contributes to the electron-phonon scattering. As for La_{0.75}Fe_3CoSb_{12} compound, the atoms of La filled into the large voids in the structure of the skutterudite produce more significant electron-phonon scattering as well as more substitute of Fe at Co site at the same time. Moreover, the point-defect scattering appears due to the difference between the atoms of La and the void. In addition, the scattering by the rattling of the rare-earth atoms in the void is another major contribution to the reduced lattice thermal conductivity. Introducing the coupling of the electron-phonon scattering with the point-defect scattering and the scattering by the rattling of the rare-earth atom is an effective method to reduce the lattice thermal conductivity of the skutterudite-related compounds by substitution of Fe for Co and the atoms of La filled in the large voids in the skutterudite structure.  相似文献   

4.
We measured the temperature dependence of thermal conductivity of a polycrystalline CVD diamond with natural isotope composition and an isotope enriched (99.96% 12C) sample at temperatures from 5 to 420 K. The isotope enriched diamond demonstrates a considerable growth of thermal conductivity at temperatures above 80 K compared to the diamond with natural composition of isotopes. At room temperature the thermal conductivity reaches 24.3 W·cm?1K?1, and the isotope effect makes up not less than 34%.  相似文献   

5.
The physical aspects of the influence of the elastic energy anisotropy of crystals on the anisotropy of the mean free paths of phonons in single-crystal films of germanium, silicon, and diamond in the diffuse scattering of phonons at the boundaries of the samples have been considered. It has been shown that, for sufficiently wide films of germanium, silicon, and diamond with the {100} and {111} orientations and the lengths of less than or equal to their width, the phonon mean free paths are isotropic (independent of the direction of the temperature gradient in the plane of the film). The anisotropy of the phonon mean free paths depends primarily on the orientation of the film plane and is determined by the focusing and defocusing of phonon modes. For single-crystal films of germanium, silicon, and diamond with the {100} and {111} orientations and lengths much larger than their width, the phonon mean free paths are anisotropic.  相似文献   

6.
A generalized expression is used on the basis of relaxation time approximation to facilitate calculation of lattice thermal conductivity of dielectric materials as well as skutterudite family consists of compounds of the form AB3. It is assumed that phonon scattering processes are independent and is represented by frequency dependent relaxation times. The contributions of normal three phonon scattering processes are included explicitly as redistribution of phonon momentum between two oscillation branches is considered. Magnitudes of relaxation times are estimated from the experimental data. The result for CoSb3 is in reasonably good agreement with the experimental result in the temperature range 1–1000°K. It is observed that redistribution of phonon momentum between two oscillation branches leads to a significant suppression of thermal conductivity maximum and it is observed that for unfilled skutterudite the main dominant mechanism at the thermal conductivity maximum is three phonon normal scattering process.  相似文献   

7.
Y. Long  Y.G. Liu  F.D. Nie 《哲学杂志》2013,93(8):1023-1045
A method based on Debye theory is developed to calculate the thermal conductivity of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The phonon–phonon interaction model is built up for solid HMX. The phonon lifetime formula is derived by the phonon–phonon scattering mechanism, and the thermal conductivity tensor is derived by the phonon dispersion model. The thermal conductivities of α/β/δ-HMX are calculated in the temperature range 0–700?K and pressure range of 0–10?GPa. The phonon softening process of HMX is investigated. We have proven that the Debye frequency and thermal conductivity tend to 0 at the phonon softening point. A physical picture of the phonon–phonon interaction, phonon lifetime and phonon softening is built up.  相似文献   

8.
The thermal conductivity of free-standing silicon nanowires (SiNWs) with diameters from 1-3?nm has been studied by using the one-dimensional Boltzmann's transport equation. Our model explicitly accounts for the Umklapp scattering process and electron-phonon coupling effects in the calculation of the phonon scattering rates. The role of the electron-phonon coupling in the heat transport is relatively small for large silicon nanowires. It is found that the effect of the electron-phonon coupling on the thermal conduction is enhanced as the diameter of the silicon nanowires decreases. Electrons in the conduction band scatter low-energy phonons effectively where surface modes dominate, resulting in a smaller thermal conductivity. Neglecting the electron-phonon coupling leads to overestimation of the thermal transport for ultra-thin SiNWs. The detailed study of the phonon density of states from the surface atoms and central atoms shows a better understanding of the nontrivial size dependence of the heat transport in silicon nanowire.  相似文献   

9.
The recently introduced analytical model for the heat current autocorrelation function of a crystal with a monatomic lattice [Evteev et al., Phil. Mag. 94 (2014) p. 731 and 94 (2014) p. 3992] is employed in conjunction with the Green–Kubo formalism to investigate in detail the results of an equilibrium molecular dynamics calculations of the temperature dependence of the lattice thermal conductivity and phonon dynamics in f.c.c. Ni. Only the contribution to the lattice thermal conductivity determined by the phonon–phonon scattering processes is considered, while the contribution due to phonon–electron scattering processes is intentionally ignored. Nonetheless, during comparison of our data with experiment an estimation of the second contribution is made. Furthermore, by comparing the results obtained for f.c.c. Ni model to those for other models of elemental crystals with the f.c.c. lattice, we give an estimation of the scaling relations of the lattice thermal conductivity with other lattice properties such as the coefficient of thermal expansion and the bulk modulus. Moreover, within the framework of linear response theory and the fluctuation-dissipation theorem, we extend our analysis in this paper into the frequency domain to predict the power spectra of equilibrium fluctuations associated with the phonon-mediated heat dissipation in a monatomic lattice. The practical importance of the analytical treatment lies in the fact that it has the potential to be used in the future to efficiently decode the generic information on the lattice thermal conductivity and phonon dynamics from a power spectrum of the acoustic excitations in a monatomic crystal measured by a spectroscopic technique in the frequency range of about 1–20 THz.  相似文献   

10.
Lattice thermal conductivity can be reduced by introducing point defect, grain boundary, and nanoscale precipitates to scatter phonons of different wave-lengths, etc. Recently, the effect of electron–phonon (EP) interaction on phonon transport has attracted more and more attention, especially in heavily doped semiconductors. Here the effect of EP interaction in n-type P-doped single-crystal Si has been investigated. The lattice thermal conductivity decreases dramatically with increasing P doping. This reduction on lattice thermal conductivity cannot be explained solely considering point defect scattering. Further, the lattice thermal conductivity can be fitted well by introducing EP interaction into the modified Debye–Callaway model, which demonstrates that the EP interaction can play an important role in reducing lattice thermal conductivity of n-type P-doped single-crystal Si.  相似文献   

11.
王彦成  邱吴劼  杨宏亮  席丽丽  杨炯  张文清 《物理学报》2018,67(1):16301-016301
对于重要热电材料之一的填充方钴矿材料,其低热导率的成因存在两种观点:1)填充原子的局域振动引起共振散射降低热导率;2)填充原子的引入加强了三声子倒逆过程来降低热导率.本文采用含有限温度效应的第一性原理分子动力学方法模拟了YbFe_4Sb_(12)的动力学过程,并通过温度相关有效势场方法得到了充分包含非线性作用的等效非谐力常数,研究了微扰近似下的声子输运性质.结果显示,在填充原子振动全部参与三声子倒逆散射过程的近似下,相比于纯方钴矿体系,声子寿命大幅地降低,填充原子的振动是热阻的重要来源.但即便如此,理论计算结果与实验的晶格热导率之间仍存在明显偏离.不同填充原子振动之间的较弱关联性质也揭示其明显偏离经典的声子图像,表现为一种强烈的局域特征振动模式,并以此散射其他晶格声子,因而对热阻的贡献也超出了传统三声子的理论框架.通过将填充原子Yb振动模式的寿命进行共振散射形式的修正,可以使晶格热导率与实验结果符合较好.以上结果表明,YbFe_4Sb_(12)的低晶格热导率是由声子间相互作用以及具有局域振动特征的共振散射两方面因素导致.  相似文献   

12.
《Physics letters. A》2019,383(23):2761-2764
With the advent of nanotechnology, silicon nanoparticles have shown promising applications in the manufacturing sector. In this letter, we examine the lattice thermal conductivity predictions for a silicon nanoparticle using three popular formulations of the Boltzmann transport equation. The models as proposed by Klemens, Callaway and Holland, essentially differ in the phonon scattering mechanisms and the vibrational modes considered in the respective formulations. At low temperatures, results from all three models show strong agreement with experimental measurements, but deviate significantly with increasing temperatures. Estimates from the Holland model, which explicitly accounts for the normal and Umklapp scattering processes of the transverse and longitudinal modes, concur with the measured values. Similar predictions are obtained from both Holland and Callaway models at high temperatures since phonon transport is dominated by longitudinal modes, as revealed from our analyses of the relaxation times. In conclusion, the letter infers the importance of mode dependent thermal conduction in silicon nanoparticle at elevated temperatures.  相似文献   

13.
The thermal conductivity coefficient of the germanium crystal lattice has been calculated by molecular dynamics simulation. Calculations have been performed for both the perfect crystal lattice and the crystal lattice with defects such as monovacancies. For the perfect germanium single crystal, the dependence of the thermal conductivity coefficient on the lattice temperature has been obtained in the temperature range of 150–1000 K. The thermal conductivity coefficient of the germanium lattice has been calculated as a function of the monovacancy concentration.  相似文献   

14.
《Physics letters. A》2020,384(30):126751
The thickness dependent in-plane thermal conductivity of layered Tungsten ditelluride (WTe2) is investigated by first-principles calculation. With the layer number increasing from one to infinite, the thermal conductivity displays a decrease to increase trend. The underlying mechanism is attributed to the change of the phonon dispersion relations. As the layer number increases, optical phonon branches shift downward, which provide more channels for the Umklapp scattering, and result in the decrease of the thermal conductivity. Furthering increasing the layer number makes those low-frequency optical phonon branches having high group velocity and leads to the increase of the lattice thermal conductivity.  相似文献   

15.
The influence of the normal phonon-phonon scattering processes on the thermal conductivity was theoretically studied for germanium crystals with various degrees of the isotope disorder. The theory takes into account redistribution of the phonon momentum in the normal scattering processes both inside each oscillation branch (Simons mechanism) and between various phonon oscillation branches (Herring mechanism). Contributions to the thermal conductivity due to the drift mobility of the longitudinal and transverse phonons are analyzed. It is shown that the momentum redistribution between longitudinal and transverse phonons according to the Herring relaxation mechanism leads to a significant suppression of the drift motions (and to the corresponding drop in contribution to the thermal conductivity) of the longitudinal phonons in isotopically pure germanium crystals. The results of the thermal conductivity calculations involving the Herring relaxation mechanism agree well with the experimental data available for germanium crystals with various degrees of the isotope disorder.  相似文献   

16.
The temperature dependences of thermal conductivity κ of polycrystalline CVD diamond are measured in the temperature range from 5 to 410 K. The diamond sample is annealed at temperatures sequentially increasing from 1550 to 1690°C to modify the properties of the intercrystallite contacts in it. As a result of annealing, the thermal conductivity decreases strongly at temperatures below 45 K, and its temperature dependence changes from approximately quadratic to cubic. At T > 45 K, the thermal conductivity remains almost unchanged upon annealing at temperatures up to 1650°C and decreases substantially at higher annealing temperatures. The experimental data are analyzed in terms of the Callaway theory of thermal conductivity [9], which takes into account the specific role of normal phonon-phonon scattering processes. The thermal conductivity is calculated with allowance for three-phonon scattering processes, the diffuse scattering by sample boundaries, the scattering by point and extended defects, the specular scattering by crystallite boundaries, and the scattering by intercrystallite contacts. A model that reproduces the main specific features of the thermal conductivity of CVD diamond is proposed. The phonon scattering by intercrystallite contacts plays a key role in this model.  相似文献   

17.
Experimental data on the thermal conductivity K(T) of crystals of natural and highly enriched germanium (99.99%) 70Ge with lapped and polished surfaces are analyzed in the temperature range ∼1.5–8 K. In all the samples in the temperature range ∼1.5–4 K the standard boundary mechanism of scattering dominates. As the temperature is raised, an isotopic scattering mechanism is observed in the natural samples. In the highly enriched samples the theoretical values of K(T) turn out to be much smaller than the experimental ones. It is conjectured that a Poiseuille viscous flow regime of the phonon gas emerges in this case. Zh. éksp. Teor. Fiz. 114, 1757–1764 (November 1998)  相似文献   

18.
利用拉曼散射技术对N型4H-SiC单晶材料进行了30~300 K温度范围的光谱测量。实验结果表明,随着温度的升高,N型4H-SiC单晶材料的拉曼峰峰位向低波数方向移动,峰宽逐渐增宽。分析认为,晶格振动随着温度的升高而随之加剧,其振动恢复力会逐渐减小,使振动频率降低;原子相对运动会随温度的升高而加剧,使得原子之间及晶胞之间的相互作用减弱,致使声学模和光学模皆出现红移现象。随着温度的升高,峰宽逐渐增宽。这是由于随着温度的升高声子数逐渐增加,增加的声子进一步增加了散射概率,从而降低了声子的平均寿命,而声子的平均寿命与峰宽成反比,因此随着温度的升高峰宽逐渐增宽。声子模强度随温度升高呈现不同规律,E2(LA),E2(TA),E1(TA)和A1(LA)声子模随着温度升高强度单调增加,而E2(TO),E1(TO)和A1(LO)声子模强度出现了先增后减的明显变化,在138 K强度出现极大值。分析认为造成原因是由于当温度高于138 K时,高能量的声子分裂成多个具有更低能量的声子所致。  相似文献   

19.
The relaxation rates of thermal and high-frequency longitudinal phonons are calculated using an anisotropic-continuum model. Three-phonon scattering mechanisms (L ? L + L, L ? T + L) for the phonon relaxation are considered. Anisotropic anharmonic phonon scattering in cubic crystals is described in terms of the second-and third-order elastic moduli. The parameters determining the longitudinal-phonon relaxation rates are found for germanium, silicon, and diamond crystals. The long-wavelength limit and the transition to the isotropic-medium model are considered, and the dependences of the relaxation rates of thermal and high-frequency phonons on temperature and phonon wave vector are analyzed for these crystals.  相似文献   

20.
The low temperature specific heat and thermal conductivity of (Cu50Zr50)94Al6 bulk metallic glass have been studied experimentally. A low temperature anomaly in the specific heat is observed in this alloy. It is also found that in addition to Debye oscillators, the localized vibration modes whose vibration density of state has a Gaussian distribution should be considered to explain the low temperature phonon specific heat anomaly. The phonon thermal conductivity dependence on temperature for the sample does not show apparent plateau characteristics as other glass materials do; however, the influence of the resonant scattering from the localized modes on the lattice thermal conductivity is prominent in the bulk metallic glass at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号