首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Regular perturbation expansions are used to analyse the fluid dynamics of unsteady, inviscid, slender, thin, incompressible (constant density), axisymmetric, upward and downward, annular liquid jets subjected to non-homogeneous, conservative body forces when both the annular jets are very thin and the gases enclosed by and surrounding the jet are dynamically passive. Both inertia- and capillarity-dominated annular jets are considered. It is shown that, for inertia-dominated jets, closure of the leading-order equations is achieved at second order in the perturbation parameter, which is the slenderness ratio, whereas closure is achieved at first order for capillarity-dominated jets. The steady leading-order equations are solved numerically by means of both an adaptive finite difference method which maps the curvilinear geometry of the jet onto a unit square and a fourth-order-accurate Runge–Kutta technique. It is shown that the fluid dynamics of steady, annular liquid jets is very sensitive to the Froude and Weber numbers and nozzle exit angle in the presence of non-homogeneous, conservative body forces. For upward jets with inwardly or axially directed velocities at the nozzle exit the effect of the non-homogeneous, conservative body forces is to increase the leading-order axial velocity component, decrease the jet's mean radius and move the stagnation point downstream. For downward jets with radially outward velocity at the nozzle exit the axial velocity component decreases monotonically as the magnitude of the non-homogeneous, conservative body forces is increased.  相似文献   

2.
This paper reports numerical modelling of impinging jet flows using Rodi and Malin corrections to the k–ϵ turbulence model, carried out using the PHOENICS finite volume code. Axisymmetric calculations were performed on single round free jets and impinging jets and the effects of pressure ratio, height and nozzle exit velocity profile were investigated numerically. It was found that both the Rodi and Malin corrections tend to improve the prediction of the hydrodynamic field of free and impinging jets but still leave significant errors in the predicted wall jet growth. These numerical experiments suggest that conditions before impingement significantly affect radial wall jet development, primarily by changing the wall jet's initial thickness.  相似文献   

3.
Impinging air jets of various shapes, sizes and configurations are commonly used in heating, cooling and drying industrial processes. An analytical study has been carried out to optimise the thermal performance of single and multiple nozzle systems using impinging air jets. The optimisation of the nozzle array was given for practical purposes. The results show that within practical limits, a narrower nozzle size results in a greater heat and mass transfer coefficient. An economical analysis of the drying processes is also given for slot nozzles.  相似文献   

4.
Effect of spanwise jet-to-jet spacing on local heat transfer distribution due to an in-line rectangular array of confined multiple circular air jets impinging on a surface parallel to the jet plate are studied experimentally. Length-to-diameter ratio of nozzles of the jet plate is 1.0. The flow, after impingement, is constrained to exit in two opposite directions from the confined passage formed between jet plate and target plate. Mean jet Reynolds numbers based on the nozzle exit diameter (d) covered are 3000, 5000, 7500 and 10,000 and jet-to-plate spacings studied are d, 2d and 3d. Spanwise pitches considered are 2d, 4d and 6d in steps of 2d keeping the streamwise pitch at 5d. For all the configurations, the jet-plates have ten spanwise rows in streamwise direction and six jets in each spanwise row. Flat heat transfer surface is made of thin stainless steel metal foil. Local temperature distribution on a target plate is measured using thermal infrared camera. Wall static pressure on the target plate is measured in the streamwise direction to estimate crossflow velocities and individual jet velocities. Heat transfer characteristics are explained on the basis of the flow distribution. A simple correlation to predict streamwise distribution of heat transfer coefficients averaged over each spanwise strip resolved to one jet hole is developed.  相似文献   

5.
In the present study, a jet superposition modeling approach is explored to model group-hole nozzle sprays, in which multiple spray jets interact with each other. An equation to estimate the merged jet velocity from each of the individual jets was derived based on momentum conservation for equivalent gas jets. Diverging and converging group-hole nozzles were also considered. The model was implemented as a sub-grid-scale submodel in a Lagrangian Drop–Eulerian Gas CFD model for spray predictions. Spray tip penetration predicted using the present superposition model was validated against experimental results for parallel, diverging and converging group-hole nozzles as a function of the angle between the two holes at various injection and ambient pressures. The results show that spray tip penetration decreases as the group hole diverging or converging angle increases. However, the spray penetration of the converging group-hole nozzle arrangement is more sensitive to the angle between the two holes compared to diverging nozzle because the radial momentum component is converted to axial momentum during the jet–jet impingement process in the converging group-hole nozzle case. The modeling results also indicate that for converging group-hole nozzles the merged sprays become ellipsoidal in cross-section far downstream of the nozzle exit with larger converging angles, indicating increased air entrainment.  相似文献   

6.
In present research, two turbulent opposed impinging air jets issuing from triangular nozzles with fixed and variable exit velocity ratios and different nozzle-to-nozzle distances have been studied numerically and then compared with rectangular and circular nozzles. The finite volume method has been applied for solving mass and momentum equations. The turbulence model being used here is k-ε RNG. Distributions of pressure, turbulence, kinetic energy and its dissipation rate in various regions especially on the impingement regions have been obtained with high accuracy. Study of the nozzle geometries has shown the advantage of triangular nozzles over other geometries. First, the triangle’s base in nozzle geometry has an important role in our study case which, mixing two flows and regions with high turbulence intensity, directly depends on it. Second, our results show that circular and rectangular nozzles have less efficiency than triangular nozzles in mixing applications. Third and last, it was found that the radial jet being created by opposed jets has some similarities to free jets. In this investigation, air in standard atmospheric pressure has been applied as working fluid.  相似文献   

7.
An experimental investigation is performed to study the effect of the finned surfaces and surfaces with vortex generators on the local heat transfer coefficient between impinging circular air jet and flat plate. Reynolds number is varied between 7000 and 30,000 based on the nozzle exit condition and jet to plate spacing between 0.5 and 6 nozzle diameters. Thermal infrared imaging technique is used for the measurement of local temperature distribution on the flat plate. Fins used are in the form of cubes of 2 mm size spaced at a pitch of 5 mm on the target plate and hexagonal prism of side 2.04 mm and height of 2 mm spaced at a pitch of 7.5 mm. Vortex generators in the form of a equilateral triangle of side 4 mm are used. Effect of number of rows of vortex generators, radius of a row, number of vortex generators in a row and inclination angle (i.e., the angle between the plane of the target plate and the plane of the vortex generators) on Nusselt number is studied. It is observed that the heat transfer coefficient between the impinging jet and the target plate is sensitive to the shape of the fin. The increase in the heat transfer coefficient up to 77% depending on the shape of the fin, nozzle plate spacing and the Reynolds number is observed. The augmentation in the heat transfer for the surfaces vortex generators are higher than that of the finned surfaces. The heat transfer augmentation in case of vortex generator is as high as 110% for a single row of six vortex generators at a radius of 1 nozzle diameter as compared to the smooth surface at a given nozzle plate spacing of 1 nozzle diameter and a Reynolds number of 25,000 at extreme radial location.  相似文献   

8.
9.
The experimental and theoretical researches on the radial jet of two opposed jets have been carried out in this paper. The radial velocities of opposed jets with various exit velocities, nozzle diameters and nozzle separations were measured experimentally by a hot-wire anemometer (HWA). The results show that, the normalized radial velocities are self-similar across various radial sections at r ? 1.5D and the radial velocity profiles can be described by a Gaussian distribution function. The half-width increases linearly with increasing radial distance at r ? 1.5D, and spreading rates of radial jet are about 0.121. The normalized radial velocity at impingement plane increases firstly, and then decreases with the increasing normalized radial distance. The normalized radial velocity is independent on nozzle diameter, nozzle separation and exit velocity. The maximum radial velocity at impingement plane is proportional to the exit velocity, and it is inversely proportional to the 0.551th power of the normalized nozzle separation. The position of the maximum radial velocity increases with the nozzle separation at L/D < 1, and keeps invariant at L/D ? 1.  相似文献   

10.
An experimental study of particle velocities in micro-abrasive jets by using the particle image velocimetry (PIV) technique is presented. It has been found that the particle jet flow has a nearly linear expansion downstream. The particle velocities increase with air pressure, and the increasing rate increases with nozzle diameter within the range considered. The instantaneous velocity profile of the particle flow field in terms of the particle velocity distribution along the axial and radial directions of the jets is discussed. For the axial profile in the jet centerline downstream, there exists an extended acceleration stage, a transition stage, and a deceleration stage. For the radial velocity profiles, a relatively flat shape is observed at a jet cross-section near the nozzle exit. Mathematical models for the particle velocities in the air jet are then developed. It is shown that the results from the models agree well with experimental data in both the variation trend and magnitude.  相似文献   

11.
The two dimensional impinging circular twin-jet flow with no-cross flow is studied numerically and experimentally. The theoretical predications are carried out through numerical procedure based on finite volume method to solve the governing mass, momentum, turbulent kinetic energy and turbulent kinetic energy dissipation rate. The parameters studied were jet Reynolds number (9.5 × 104  Re  22.4 × 104), nozzle to plate spacing (3  h/d  12), nozzle to nozzle centerline spacing (l/d = 3, 5 and 8) and jet angle (0°  θ  20°). It is concluded that the stagnation primary point moves away in the radial main flow direction by increasing the jet angle. This shift becomes stronger by increasing the nozzle to nozzle centerline spacing (l/d). A secondary stagnation point is set up between two jets. The value of pressure at this point decreases by decreasing Reynolds number and/or increasing the jet angle.

The sub atmospheric region occurs on the impingement plate. It increases strongly by increasing Reynolds number and decreases as the jet angle and/or a nozzle to plate spacing increases. The spreading of jet decreases by increasing nozzle to plate spacing. The intensity of re-circulation zone between two jets decreases by increasing of h/d and jet angle. The increase of turbulence kinetic energy occurs within high gradient velocity.  相似文献   


12.
In the generation of discrete tones by subsonic impinging jets, there exists a difference of opinion as how the feedback is achieved, i.e., the path of the feedback acoustic waves is whether inside the jet or outside the jet? The only available model (Tam and Ahuja model) for the prediction of an average subsonic jet impingement tone frequency assumes that the upstream part of the feedback loop is closed by an upstream propagating neutral wave of the jet. But, there is no information about the plate geometry in the model. The present study aims at understanding the effect of the plate geometry (size and co-axial hole in the plate) on the self-excitation process of subsonic impinging jets and the path of the acoustic feedback to the nozzle exit. The present results show that there is no effect of plate diameter on the frequency of the self-excitation. A new type of tones is generated for plates with co-axial hole (hole diameter is equal to nozzle exit diameter) for Mach numbers 0.9 and 0.95, in addition to the axisymmetric and helical mode tones observed for plates without co-axial hole. The stability results show that the Strouhal number of the least dispersive upstream propagating neutral waves match with the average Strouhal number of the new tones observed in the present experiments. The present study extends the validity of the model of Tam and Ahuja to a plate with co-axial hole (annular plate) and by doing so, we indirectly confirmed that the major acoustic feedback path to the nozzle exit is inside the jet.  相似文献   

13.
An experiment was conducted to investigate turbulent, low-speed air jets issuing from bevelled and non-bevelled circular collared-nozzle configurations. The collar-to-nozzle expansion ratio used was three and Reynolds number was approximately 20,000. Detailed mean flow velocity fields and velocity spectra of the resultant jet flows at different collar lengths and bevel angles were evaluated using hot-wire anemometry along both axial and radial directions of the jets. Centreline velocity decay was shown to be augmented when either collar length or bevel angle was increased, with the collar length playing a more dominant role. Results also showed that bevelled collared-jets vectored towards the longer collar-length region, the extent to which was enhanced when the collar length or bevel angle was increased. The study demonstrated that a bevelled collar exit could be used as an additional control device on top of the collar length to achieve finer jet flow control in terms of jet momentum vectoring and asymmetric jet spread.  相似文献   

14.
A water-air impinging jets atomizer is investigated in this study, which consists of flow visualization using high speed photography and mean droplet size and velocity distribution measurements of the spray using Phase Doppler Anemometry (PDA). Topological structures and break up details of the generated spray in the far and near fields are presented with and without air jet and for an impinging angle of 90°. Spray angle increases with the water jet velocity, air flow rate and impinging angle. PDA results indicate that droplet size is smallest in the spray center, with minimum value of Sauter mean diameter (SMD) of 50 µm at the air flow rate of Qm = 13.50 g/min. SMD of droplets increases towards the spray outer region gradually to about 120 µm. The mean droplet velocity component W along the air-jet axis is highest in the spray center and decreases gradually with increasing distance from the spray center. SMD normalized by the air nozzle diameter is found firstly to decrease with gas-to-liquid mass ratio (GLR) and air-to-liquid momentum ratio (ALMR) and then remain almost constant. Its increasing with aerodynamic Weber number indicates an exponential variation. The study sheds light on the performance of water-air impinging jets atomizers providing useful information for future CFD simulation works.  相似文献   

15.
Velocity profiles and wall shear stress values in the wall jet region of planar underexpanded impinging jets are parameterized based on nozzle parameters (stand-off height, jet hydraulic diameter, and nozzle pressure ratio). Computational fluid dynamics is used to calculate the velocity fields of impinging jets with height-to-diameter ratios in the range of 15–30 and nozzle pressure ratio in the range of 1.2–3.0. The wall jet has an incomplete self-similar profile with a typical triple-layer structure as in traditional wall jets. The effects of compressibility are found to be insignificant for wall jets with Ma < 0.8. Wall jet analysis yielded power-law relationships with source dependent coefficients describing maximum velocity, friction velocity, and wall distances for maximum and half-maximum velocities. Source dependency is determined using the conjugate gradient method. These power-law relationships can be used for mapping wall shear stress as a function of nozzle parameters.  相似文献   

16.
We consider asymmetric impinging jets issuing from an arbitrary nozzle. The flow is assumed to be two‐dimensional, inviscid, incompressible, and irrotational. The impinging jet from an arbitrary nozzle has a couple of separated infinite free boundaries, which makes the problem hard to solve. We formulate this problem using the stream function represented with a specific single layer potential. This potential can be extended to the surrounding region of the jet flow, and this extension can be proved to be a bounded function. Using this fact, the formulation yields the boundary integral equations on the entire nozzle and free boundary. In addition, a boundary perturbation produces an extraordinary boundary integral equation for the boundary variation. Based on these variational boundary integral equations, we can provide an efficient algorithm that can treat with the asymmetric impinging jets having arbitrarily shaped nozzles. Particularly, the proposed algorithm uses the infinite computational domain instead of a truncated one. To show the convergence and accuracy of the numerical solution, we compare our solutions with the exact solutions of free jets. Numerical results on diverse impinging jets with nozzles of various shapes are also presented to demonstrate the applicability and reliability of the algorithm.  相似文献   

17.
An experimental and numerical study of underexpanded free sonic jet flows issuing from rectangular, elliptical and slot nozzles has been undertaken. Aspect ratios (AR) of 1, 2, and 4 are described at pressure ratios (exit plane pressure to ambient pressure), of 2 and 3. There is good qualitative agreement between the experimental observations and the numerical predictions. In the case of rectangular jets, a complex system of shock waves forming the incident shock system is identified. This shock wave system originates at the corners of the nozzle exits, and proceeds downstream. Mach reflections are found to occur on the incident shock wave surface as well as the presence of a Mach disk terminating the first jet cell. This Mach disk has the shape of a square, a hexagon, or an octagon depending on the nozzle shape. For slot and elliptical jets, the formation of the incident shock wave was not observed along the minor axis plane of the nozzle for AR > 2. The incident shock wave was observed to originate downstream of the nozzle exit in the major axis plane. This wave system undergoes a transition to Mach reflection as it propagates downstream of the nozzle exit. In all cases tested, the shape of the jet boundary is significantly distorted. In rectangular jets, the narrowing of the jet boundary along the diagonal axis of the nozzle exit is observed, and in the case of the elliptical and slot jets axis switching is noted.  相似文献   

18.
A finite volume computational scheme to solve the Navier-Stokes equations for the laminar flow fields of partially enclosed axial and radial jets impinging on a flat plate has been devised and tested. This scheme is based on the SIMPLEC technique. However, because of the backflow at the ‘outflow’ boundary, the SIMPLEC pressure correction technique has to be modified. The need for this modification, necessitated by the convergence failure, showed the ‘hidden’ pressure boundary condition of SIMPLE-type techniques. Test computations with the present scheme for flows in a channel with a built-in cylinder show that the location of the exit boundary affects very slightly the separated flow behind the cylinder. Computed Squire jet flows compare quite well with the available analytical solution. Finally, impinging radial jets have been computed for different Reynolds numbers. The results show the critical Reynolds number below which a steady solution is obtained and above which periodic and eventually chaotic flows result.  相似文献   

19.
A density-based solver with the classical fourth-order accurate Runge-Kutta temporal discretization scheme was developed and applied to study under-expanded jets issued through millimetre-size nozzles for applications in high-pressure direct-injection (DI) gaseous-fuelled propulsion systems. Both large eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) turbulence modelling techniques were used to evaluate the performance of the new code. The computational results were compared both quantitatively and qualitatively against available data from the literature. After initial evaluation of the code, the computational framework was used in conjunction with RANS modelling (k-ω SST) to investigate the effect of nozzle exit geometry on the characteristics of gaseous jets issued from millimetre-size nozzles. Cylindrical nozzles with various length to diameter ratios, namely 5, 10 and 20, in addition to a diverging conical nozzle, were studied. This study is believed to be the first to provide a direct comparison between RANS and LES within the context of nozzle exit profiling for advanced high-pressure injection systems with the formation of under-expanded jets. It was found that reducing the length of the straight section of the nozzle by 50% resulted in a slightly higher level of under-expansion (∼2.6% higher pressure at the nozzle exit) and ∼1% higher mass flow rate. It was also found that a nozzle with 50% shorter length resulted in ∼6% longer jet penetration length. At a constant nozzle pressure ratio (NPR), a lower nozzle length to diameter ratio resulted in a noticeably higher jet penetration. It was found that with a diverging conical nozzle, a fairly higher penetration length could be achieved if an under-expanded jet formed downstream of the nozzle exit compared to a jet issued from a straight nozzle with the same NPR. This was attributed to the radial restriction of the flow and consequently formation of a relatively smaller reflected shock angle. With the conical nozzle used in this study and a 30 bar injection pressure, an under-expanded hydrogen jet exhibited ∼60% higher penetration length compared to an under-expanded nitrogen jet at 100 μs after start of injection. Moreover, the former jet exhibited ∼22% higher penetration compared to a nitrogen jet issued through the conical profile with 150 bar injection pressure.  相似文献   

20.
The results of a numerical analysis of a supersonic underexpanded jet impinging on an inclined flat plate are presented. The effects of the angle between the plate and the jet symmetry axis, the distance from the nozzle exit section, the exit Mach number, and the off-design conditions on the distribution of the gasdynamic parameters in the jet flowfield and on the plate surface are demonstrated. Specific features of the compressed layer and obstacle surface flows are revealed. The three-dimensional flow is simulated using the large particle method on the basis of the nonstationary Euler equations written in the cylindrical coordinate system. The calculated results are compared with experimental data. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 31–35, January–February, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号