首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural relaxation of a bulk Pd40Cu30Ni10P20 metallic glass is studied by measuring the electrical resistivity and infralow-frequency (0.05 Hz) internal friction. It is demonstrated that the structural relaxation in thermally aged samples can be restored by quenching them from a supercooled liquid state. It is found that the degree of relaxation after quenching can exceed the initial one by several times.  相似文献   

2.
Isothermal kinetics of relaxation of the high-frequency (1.4 MHz) shear modulus during structural relaxation of Pd40Cu30Ni10P20 bulk metallic glass below the glass transition temperature is studied by an in situ method of contactless electromagnetic acoustic transformation. The kinetic law of relaxation is established. It is shown that quenching of aged samples from the supercooled liquid state leads to a decrease in the absolute value of shear modulus to below the initial value; the degree of subsequent isothermal relaxation of the modulus may be several times higher than the initial value. Possible reasons for relaxation and recovery of the shear modulus are considered.  相似文献   

3.
Isochronous relaxation of tensile stresses is measured in a bulk Pd40Cu30Ni10P20 metallic glass in the initial state and after certain thermal treatments. The results of measurements are used to find the energy spectrum of irreversible structural relaxation, from which the temperature dependence of shear viscosity is then calculated. This dependence is also found independently from measurements of creep in the same glass. The calculated viscosity is shown to agree well with the experimental data.  相似文献   

4.
The compression of a Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass (BMG) is investigated at room temperature up to 24 GPa using in-situ high pressure energy dispersive X-ray diffraction with a synchrotron radiation source. The pressure-induced structural relaxation is exhibited. It is found that below about 8 GPa, the existence of excess free volume contributes to the rapid structural relaxation, which gives rise to the rapid volumetric change, and the structural relaxation results in the structural stiffness under higher pressure.  相似文献   

5.
Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass (BMG) is annealed at 573 K under 3 GPa and its structural relaxation is investigated by X-ray diffraction, ultrasonic study, compression as well as sliding wear measurements. It is found that after the ZrTiCuNiBe BMG sample was annealed under high pressure, the mechanical properties were improved. Moreover, theBMG with relaxed structure exhibits markedly different acoustic properties. These results are attributed to the fact that relaxation under high-pressure results in a microstructural transformation in the BMG.  相似文献   

6.
The electrical resistances of ribbon and bulk Pd40Cu30Ni10P20 metallic glasses, whose quenching rates differ by four orders of magnitude, were precisely measured during cyclic heating. Three stages of electrical resistance relaxation are detected as the maximum heating temperature increases. The first and third stages decrease the electrical resistance, and the second stage increases it. The first stage is shown to be caused by the relaxation of deformation-induced internal stresses and not to be related to the excess free volume concentration, which differs by a factor of about 2 in the ribbon and bulk samples. The second stage reflects structural relaxation in the glass and is only partly related to its free volume. The third relaxation stage is assumed to be caused by fine precrystallization phenomena like phase separation. The effect of deformation by rolling or quenching from the temperature range of a supercooled melt on the resistance relaxation kinetics was also studied.  相似文献   

7.
The shear viscosity is measured under conditions of isochronous (linear) heating below the glass transition temperature of the Pd40Cu40P20 metallic glass, which is characterized by the polymorphic crystallization into the Pd2Cu2P tetragonal phase with a lower density than the initial glass. It is shown that the rate dependence of the shear viscosity can be interpreted as a result of the irreversible structural relaxation by analogy with the case of the previously studied metallic glasses despite the unusual ratio of the densities of the material in noncrystalline and crystalline states.  相似文献   

8.
The dielectric properties of composite materials prepared by embedding P(VDF60/Tr40) and P(VDF88/Te12) polar copolymers in porous glass matrices with a mean flow-through pore diameter of around 320 nm were investigated in the temperature range 200–450 K. Strong dielectric relaxation, the characteristic time of which conformed to the Williams-Landel-Ferry law, was observed in the vicinity of glass transition point T g of an amorphous fraction of polymer inclusions. An increase (≈10 K) in the T g temperature of the amorphous fraction of incorporated polymeric materials was detected.  相似文献   

9.
The low-frequency process of dielectric relaxation in the new lead-free compound BiLi0.6W0.4O3 prepared by conventional ceramic technology is studied. The features of dielectric relaxation are discussed in terms of a model of interaction between the domain boundaries and point defects of a crystalline lattice.  相似文献   

10.
Differential transient absorption spectra have been studied for planar densely packed Ag/Na3AlF6 nanostructures under ultrashort laser pulse excitation. The nanostructures were fabricated by sequential thermal evaporation of cryolite (Na3AlF6) and silver in vacuo onto glass and quartz substrates. A nonmonotonic variation in relaxation times of induced changes in a surface plasmon resonance band was observed with an increase in the metal surface density that resulted in nanoparticle size growth and structural modification of the densely packed layer. The tendency of the relaxation times to vary nonmonotonically is explained by both features of intrinsic size effects and electron-tunneling processes in plasmonic densely packed nanostructures of various topologies.  相似文献   

11.
Precise measurements of the relative volume change of vitreous B2O3 have been performed by the strain-gauge technique at hydrostatic pressures up to 9 GPa. The features of the strain-gauge technique are analyzed and the specificity of the measurements of “relaxed” and “unrelaxed” bulk moduli is discussed. Smeared anomalies of compressibility (at P > 0.5 GPa and P > 5 GPa) and logarithmic relaxation of the glass density are observed. A significant (by several times!) difference has been revealed between the relaxed bulk modulus of glass obtained from the volume measurements and the unrelaxed modulus estimated from the Brillouin spectroscopic data. The measurements of the relative volume change under compression together with the previous structure investigations and computer simulation results reveal the basic features of the phase transitions in B2O3 glass. Both direct and reverse transitions are smeared in pressure. The residual densification in glass is not associated with change in the short-range order.  相似文献   

12.
The magnetic relaxation in Pd0.99Fe0.01 films, which have the thicknesses that are practically important for cryoelectronics (25 and 40 nm), is detected and experimentally studied. The relaxation is shown to be substantial only in thin films. The magnetization relaxation is found to be well described by the sum of two exponential functions with characteristic times that differ by an order of magnitude from each other. The characteristic relaxation time and the ratio of the contributions of two relaxations depend on temperature. The activation energies of the relaxation processes are determined. The activation volume is shown to correspond to a 20-nm ferromagnetic cluster. The results obtained agree with the model of two-component magnetization in thin PdFe films [6].  相似文献   

13.
Li3V2(PO4)3 glass-ceramic nanocomposites, based on 37.5Li2O-25V2O5-37.5P2O5 mol% glass, were successfully prepared via heat treatment (HT) process. The structure and morphology were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD patterns exhibit the formation of Li3V2(PO4)3 NASICON type with monoclinic structure. The grain sizes were found to be in the range 32–56 nm. The effect of grain size on the dynamics of Li+ ions in these glass-ceramic nanocomposites has been studied in the frequency range of 20 Hz–1 MHz and in the temperature range of 333–373 K and analyzed by using both the conductivity and modulus formalisms. The frequency exponent obtained from the power law decreases with the increase of temperature, suggesting a weaker correlation among the Li+ ions. Scaling of the conductivity spectra has also been performed in order to obtain insight into the relaxation mechanisms. The imaginary modulus spectra are broader than the Debye peak-width, but are asymmetric and distorted toward the high frequency region of the maxima. The electric modulus data have been fitted to the non-exponential Kohlrausch–Williams–Watts (KWW) function and the value of the stretched exponent β is fairly low, suggesting a higher ionic conductivity in the glass and its glass-ceramic nanocomposites. The advantages of these glass-ceramic nanocomposites as cathode materials in Li-ion batteries are shortened diffusion paths for Li+ ions/electrons and higher surface area of contact between cathode and electrolyte.  相似文献   

14.
The compositional dependence of thermal properties, such as glass transition temperature (Tg), non-reversing enthalpy change (ΔHNR) and the specific heat capacity change (ΔCp) of melt quenched Ge7Se93-xSbx (21 ≤ x ≤ 31) glasses, has been studied using alternating differential scanning calorimetry (ADSC) which is analogous to modulated differential scanning calorimetry (MDSC). The glass transition temperature, Tg, which is a measure of global connectivity of the glass, has been found to increase with the addition of Sb. In addition, a change in slope has been observed in the composition dependence of Tg at an average coordination 〈r〉 = 2.40. The experimentally observed compositional variation of glass transition temperature, has been compared with the theoretical predictions from the stochastic agglomeration theory (SAT) and has been found to be consistent. Further, a narrow thermally reversing window is seen in the compositional variation of the relaxation enthalpy (ΔHNR), which is centered around 〈r〉 = 2.40. The change in specific heat capacity (ΔCp) at Tg is also found to exhibit a distinct minima at 〈r〉 = 2.40, suggesting that the structural rearrangements for the liquid in the glass transition region are minimized around 〈r〉 = 2.4.  相似文献   

15.
Fine-sized BaO-ZnO-B2O3-SiO2 (BZBS) glass powders were directly prepared by high temperature spray pyrolysis. The hollow glass powders prepared at low preparation temperature of 1000 °C had a low density of 2.65 g/cm3. However, the densities of the BZBS powders obtained at preparation temperatures of 1200 and 1400 °C were each 3.92 and 4.13 g/cm3. The mean size of the BZBS glass powders prepared by spray pyrolysis at preparation temperature of 1400 °C was 0.98 μm. The glass transition temperature (Tg) of the prepared BZBS glass powders was 518.9 °C. The dielectric layers formed from the prepared BZBS glass powders with a dense structure had a clean surface and a dense inner structure without voids at the firing temperature of 580 °C. The transparencies of the dielectric layers formed from the prepared BZBS glass powders were higher than 90% within the visible range. PACS 42.70.Ce; 85.60.Pg; 71.55.Jv  相似文献   

16.
The temperature and frequency dependencies of sound attenuation for the proper uniaxial ferroelectric Sn2P2S6, which has a strong nonlinear interaction of the polar soft optic and fully symmetrical optic modes that is related to the triple well potential, were studied by Brillouin spectroscopy. It was found that the sound velocity anomaly is described in the Landau-Khalatnikov approximation with one relaxation time. For explanation of the observed temperature and frequency dependencies of the sound attenuation in the ferroelectrric phase, the accounting of several relaxation times is needed and, for quantitative calculations, the mode Gruneisen coefficients are more appropriate as interacting parameters than are the electrostrictive coefficients. Relaxational sound attenuation by domain walls also appears in the ferroelectric phase of Sn2P2S6 crystals.  相似文献   

17.
Using different temperature and field protocols, the memory behaviors in the dc magnetization and magnetic relaxation are observed at temperature below blocking temperature TB = 93 K in weakly interacting manganite La0.6Pb0.4MnO3 nanoparticles. The results indicate that the magnetic dynamics of this nanoparticle system is strongly correlated with a wide distribution of particle relaxation times, which may arise from the particle weak interaction and distribution of the particle size.  相似文献   

18.
A large variety of glass and glass ceramics may be obtained by sol-gel process from hydrolysis of tetraethoxysilane. The transformation involves hydrolysis and polycondensation reactions leading to the growth of clusters that eventually collide together to form a gel. The structure and properties of the final product have been found to be strongly dependent on the initial conditions of preparation. Silica nanocomposites based on Fe2O3/SiO2 were prepared with the help of ultrasonic activation and subsequent annealing in nitrogen atmosphere or air with concentrations of iron oxide of about 20 to 30wt.%.  相似文献   

19.
The resonance frequencies and relaxation mechanisms of Cs2CuBr4 and Cs2ZnBr4 were examined by static nuclear magnetic resonance (NMR) method. Here, the two inequivalent Cs(1) and Cs(2) sites surrounded by Br ions were distinguished. The saturation recovery traces for 133Cs nuclei in Cs2CuBr4 with the paramagnetic ions, and those in Cs2ZnBr4 without the paramagnetic ions were each fitted by four exponential functions. From these results, the spin–lattice relaxation times T1 in the laboratory frame of 133Cs nuclei in the two crystals were obtained, and Cs(1) surrounded by 11 bromide ions has a longer relaxation time than Cs(2) surrounded by 9 bromide ions.  相似文献   

20.
The time dependences of polarization of K0.88(NH4)0.12H2PO4 mixed crystal have been studied within the temperature range of 74–100 K. Two mechanisms of polarization relaxation were found. The first mechanism is caused by domain walls lateral motion and their interaction with point lattice defects. The second one supposedly is due to polar regions infiltration through the regions of frustrated paraelectric phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号